46 research outputs found

    Prostaglandin D2-supplemented “functional eicosanoid testing and typing” assay with peripheral blood leukocytes as a new tool in the diagnosis of systemic mast cell activation disease: an explorative diagnostic study

    Get PDF
    Background: Systemic mast cell activation disease (MCAD) is characterized by an enhanced release of mast cell-derived mediators, including eicosanoids, which induce a broad spectrum of clinical symptoms. Accordingly, the diagnostic algorithm of MCAD presupposes the proof of increased mast cell mediator release, but only a few mediators are currently established as routine laboratory parameters. We thus initiated an explorative study to evaluate in vitro typing of individual eicosanoid pattern of peripheral blood leukocytes (PBLs) as a new diagnostic tool in MCAD. Methods: Using the “functional eicosanoid testing and typing” (FET) assay, we investigated the balance (i.e. the complex pattern of formation, release and mutual interaction) of prostaglandin E2 (PGE2) and peptido-leukotrienes (pLT) release from PBLs of 22 MCAD patients and 20 healthy individuals. FET algorithms thereby consider both basal and arachidonic acid (AA)-, acetylsalicylic acid (ASA)-, and substance P (SP)-triggered release of PGE2 and pLT. The FET assay was further supplemented by analyzing prostaglandin D2 (PGD2), as mast cell-specific eicosanoid. Results: We observed marked PGE2-pLT imbalances for PBLs of MCAD patients, as indicated by a markedly enhanced mean FET value of 1.75 ± 0.356 (range: 1.14–2.36), compared to 0.53 ± 0.119 (range: 0.36-0.75) for healthy individuals. In addition, mean PGD2 release from PBLs of MCAD patients was significantly, 6.6-fold higher than from PBLs of healthy individuals (946 ± 302.2 pg/ml versus 142 ± 47.8 pg/ml; P < 0.001). In contrast to healthy individuals, PGD2 release from PBLs of MCAD patients was markedly triggered by SP (mean: 1896 ± 389.7 pg/ml; P < 0.001), whereas AA and ASA caused individually varying effects on both PGD2 and pLT release. Conclusions: The new in-vitro FET assay, supplemented with analysis of PGD2, demonstrated that the individual patterns of eicosanoid release from PBLs can unambiguously distinguish MCAD patients from healthy individuals. Notably, in our analyses, the FET value and both basal and triggered PGD2 levels were not significantly affected by MCAD-specific medication. Thus, this approach may serve as an in-vitro diagnostic tool to estimate mast cell activity and to support individualized therapeutic decision processes for patients suffering from MCAD

    The glial growth factors deficiency and synaptic destabilization hypothesis of schizophrenia

    Get PDF
    BACKGROUND: A systems approach to understanding the etiology of schizophrenia requires a theory which is able to integrate genetic as well as neurodevelopmental factors. PRESENTATION OF THE HYPOTHESIS: Based on a co-localization of loci approach and a large amount of circumstantial evidence, we here propose that a functional deficiency of glial growth factors and of growth factors produced by glial cells are among the distal causes in the genotype-to-phenotype chain leading to the development of schizophrenia. These factors include neuregulin, insulin-like growth factor I, insulin, epidermal growth factor, neurotrophic growth factors, erbB receptors, phosphatidylinositol-3 kinase, growth arrest specific genes, neuritin, tumor necrosis factor alpha, glutamate, NMDA and cholinergic receptors. A genetically and epigenetically determined low baseline of glial growth factor signaling and synaptic strength is expected to increase the vulnerability for additional reductions (e.g., by viruses such as HHV-6 and JC virus infecting glial cells). This should lead to a weakening of the positive feedback loop between the presynaptic neuron and its targets, and below a certain threshold to synaptic destabilization and schizophrenia. TESTING THE HYPOTHESIS: Supported by informed conjectures and empirical facts, the hypothesis makes an attractive case for a large number of further investigations. IMPLICATIONS OF THE HYPOTHESIS: The hypothesis suggests glial cells as the locus of the genes-environment interactions in schizophrenia, with glial asthenia as an important factor for the genetic liability to the disorder, and an increase of prolactin and/or insulin as possible working mechanisms of traditional and atypical neuroleptic treatments

    Theories of schizophrenia: a genetic-inflammatory-vascular synthesis

    Get PDF
    BACKGROUND: Schizophrenia, a relatively common psychiatric syndrome, affects virtually all brain functions yet has eluded explanation for more than 100 years. Whether by developmental and/or degenerative processes, abnormalities of neurons and their synaptic connections have been the recent focus of attention. However, our inability to fathom the pathophysiology of schizophrenia forces us to challenge our theoretical models and beliefs. A search for a more satisfying model to explain aspects of schizophrenia uncovers clues pointing to genetically mediated CNS microvascular inflammatory disease. DISCUSSION: A vascular component to a theory of schizophrenia posits that the physiologic abnormalities leading to illness involve disruption of the exquisitely precise regulation of the delivery of energy and oxygen required for normal brain function. The theory further proposes that abnormalities of CNS metabolism arise because genetically modulated inflammatory reactions damage the microvascular system of the brain in reaction to environmental agents, including infections, hypoxia, and physical trauma. Damage may accumulate with repeated exposure to triggering agents resulting in exacerbation and deterioration, or healing with their removal. There are clear examples of genetic polymorphisms in inflammatory regulators leading to exaggerated inflammatory responses. There is also ample evidence that inflammatory vascular disease of the brain can lead to psychosis, often waxing and waning, and exhibiting a fluctuating course, as seen in schizophrenia. Disturbances of CNS blood flow have repeatedly been observed in people with schizophrenia using old and new technologies. To account for the myriad of behavioral and other curious findings in schizophrenia such as minor physical anomalies, or reported decreased rates of rheumatoid arthritis and highly visible nail fold capillaries, we would have to evoke a process that is systemic such as the vascular and immune/inflammatory systems. SUMMARY: A vascular-inflammatory theory of schizophrenia brings together environmental and genetic factors in a way that can explain the diversity of symptoms and outcomes observed. If these ideas are confirmed, they would lead in new directions for treatments or preventions by avoiding inducers of inflammation or by way of inflammatory modulating agents, thus preventing exaggerated inflammation and consequent triggering of a psychotic episode in genetically predisposed persons

    Convergent functional genomic studies of omega-3 fatty acids in stress reactivity, bipolar disorder and alcoholism

    Get PDF
    Omega-3 fatty acids have been proposed as an adjuvant treatment option in psychiatric disorders. Given their other health benefits and their relative lack of toxicity, teratogenicity and side effects, they may be particularly useful in children and in females of child-bearing age, especially during pregnancy and postpartum. A comprehensive mechanistic understanding of their effects is needed. Here we report translational studies demonstrating the phenotypic normalization and gene expression effects of dietary omega-3 fatty acids, specifically docosahexaenoic acid (DHA), in a stress-reactive knockout mouse model of bipolar disorder and co-morbid alcoholism, using a bioinformatic convergent functional genomics approach integrating animal model and human data to prioritize disease-relevant genes. Additionally, to validate at a behavioral level the novel observed effects on decreasing alcohol consumption, we also tested the effects of DHA in an independent animal model, alcohol-preferring (P) rats, a well-established animal model of alcoholism. Our studies uncover sex differences, brain region-specific effects and blood biomarkers that may underpin the effects of DHA. Of note, DHA modulates some of the same genes targeted by current psychotropic medications, as well as increases myelin-related gene expression. Myelin-related gene expression decrease is a common, if nonspecific, denominator of neuropsychiatric disorders. In conclusion, our work supports the potential utility of omega-3 fatty acids, specifically DHA, for a spectrum of psychiatric disorders such as stress disorders, bipolar disorder, alcoholism and beyond

    Malaria endemicity and co-infection with tissue-dwelling parasites in Sub-Saharan Africa: a review

    Get PDF

    Toxoplasma gondii and the blood-brain barrier

    Get PDF
    Infection with the protozoan parasite Toxoplasma gondii is characterized by asymptomatic latent infection in the central nervous system and skeletal muscle tissue in the majority of immunocompentent individuals. Life-threatening reactivation of the infection in immunocompromized patients originates from rupture of Toxoplasma cysts in the brain. While major progress has been made in our understanding of the immunopathogenesis of infection the mechanism(s) of neuroinvasion of the parasite remains poorly understood. The present review presents the current understanding of blood-brain barrier (patho)physiology and the interaction of Toxoplasma gondii with cells of the blood-brain barrier
    corecore