18 research outputs found
Examination of the Effects of Heterogeneous Organization of RyR Clusters, Myofibrils and Mitochondria on Ca2+ Release Patterns in Cardiomyocytes
Spatio-temporal dynamics of intracellular calcium, [Ca2+]i, regulate the contractile function of cardiac muscle cells. Measuring [Ca2+]i flux is central to the study of mechanisms that underlie both normal cardiac function and calcium-dependent etiologies in heart disease. However, current imaging techniques are limited in the spatial resolution to which changes in [Ca2+]i can be detected. Using spatial point process statistics techniques we developed a novel method to simulate the spatial distribution of RyR clusters, which act as the major mediators of contractile Ca2+ release, upon a physiologically-realistic cellular landscape composed of tightly-packed mitochondria and myofibrils.We applied this method to computationally combine confocal-scale (~ 200 nm) data of RyR clusters with 3D electron microscopy data (~ 30 nm) of myofibrils and mitochondria, both collected from adult rat left ventricular myocytes. Using this hybrid-scale spatial model, we simulated reaction-diffusion of [Ca2+]i during the rising phase of the transient (first 30 ms after initiation). At 30 ms, the average peak of the simulated [Ca2+]i transient and of the simulated fluorescence intensity signal, F/F0, reached values similar to that found in the literature ([Ca2+]i 1 μM; F/F0 5.5). However, our model predicted the variation in [Ca2+]i to be between 0.3 and 12.7 μM (~3 to 100 fold from resting value of 0.1 μM) and the corresponding F/F0 signal ranging from 3 to 9.5. We demonstrate in this study that: (i) heterogeneities in the [Ca2+]i transient are due not only to heterogeneous distribution and clustering of mitochondria; (ii) but also to heterogeneous local densities of RyR clusters. Further, we show that: (iii) these structureinduced heterogeneities in [Ca2+]i can appear in line scan data. Finally, using our unique method for generating RyR cluster distributions, we demonstrate the robustness in the [Ca2+]i transient to differences in RyR cluster distributions measured between rat and human cardiomyocytes
Synaptic dysfunction, memory deficits and hippocampal atrophy due to ablation of mitochondrial fission in adult forebrain neurons
Well-balanced mitochondrial fission and fusion processes are essential for nervous system development. Loss of function of the main mitochondrial fission mediator, dynamin-related protein 1 (Drp1), is lethal early during embryonic development or around birth, but the role of mitochondrial fission in adult neurons remains unclear. Here we show that inducible Drp1 ablation in neurons of the adult mouse forebrain results in progressive, neuronal subtype-specific alterations of mitochondrial morphology in the hippocampus that are marginally responsive to antioxidant treatment. Furthermore, DRP1 loss affects synaptic transmission and memory function. Although these changes culminate in hippocampal atrophy, they are not sufficient to cause neuronal cell death within 10 weeks of genetic Drp1 ablation. Collectively, our in vivo observations clarify the role of mitochondrial fission in neurons, demonstrating that Drp1 ablation in adult forebrain neurons compromises critical neuronal functions without causing overt neurodegeneration
Mathematical Modeling and Simulation of Ventricular Activation Sequences: Implications for Cardiac Resynchronization Therapy
Next to clinical and experimental research, mathematical modeling plays a crucial role in medicine. Biomedical research takes place on many different levels, from molecules to the whole organism. Due to the complexity of biological systems, the interactions between components are often difficult or impossible to understand without the help of mathematical models. Mathematical models of cardiac electrophysiology have made a tremendous progress since the first numerical ECG simulations in the 1960s. This paper briefly reviews the development of this field and discusses some example cases where models have helped us forward, emphasizing applications that are relevant for the study of heart failure and cardiac resynchronization therapy
Genetic variation among South Brazilian accessions of Lippia alba Mill. (Verbenaceae) detected by ISSR and RAPD markers
Learning from inflation experiences.
Abstract How do individuals form expectations about macroeconomic variables? We propose that personal experiences play an important role that is absent from existing models. Under learning from experience, individuals adapt their forecasting models to new data, but they overweight data realized during their life-times compared with other historical data. As a consequence, young individuals place more weight on recently experienced data than older individuals and they update their expectations more strongly in the direction of recent surprises. We find support for these predictions using 54 years of microdata on inflation expectations from the Reuters/Michigan Survey of Consumers. We find that differences in life-time experiences strongly predict differences in subjective inflation expectations. Learning from experience explains the substantial disagreement between young and old individuals in periods of high surprise inflation, such as the 1970s. The loss of distant memory implied by learning from experience also provides a natural micro foundation for models of perpetual learning, such as constant-gain learning models. * We than
Reduction of calcium release site models via optimized state aggregation
Background
Markov chain models of calcium release sites in living cells exhibit stochastic dynamics reminiscent of the experimentally observed phenomenon of calcium puffs and sparks. Such models often take the form of stochastic automata networks in which the transition probabilities for each of a large number of intercellular channel models depend on the local calcium concentration and thus the state of nearby channels. The state-space size in such compositionally defined calcium release site models increases exponentially as the number of channels increases, which is referred to as “state-space explosion”.
Methods
In order to overcome the state-space explosion problem, we utilized the idea of “coarse graining” and implemented an automated procedure that reduces the state space by aggregating and lumping states of the full release site model. For a given state aggregation scheme, the transition rates between reduced states are chosen consistent with the conditional probability distribution among states within each group. A genetic algorithm-based approach is then applied to select the state aggregation schemes that lead to reduced models that approximate the observable behaviors of the full model.
Results
The genetic algorithm-based approach is implemented in Matlab®; and applied to two different release site models. The approach found reduced models that approximate the full model in the number of open channels, spark statistics, and the jump probability matrix as a function of time.
Conclusions
A novel automated genetic algorithm-based searching technique is implemented to find reduced calcium release site models that approximate observable behaviors of the full Markov chain models that possess intractable state-spaces. As compared to the full model, the reduced models produce quantitatively similar results using significantly less computational resources
Mitochondrial calcium exchange links metabolism with the epigenome to control cellular differentiation
Deep time perspective on turtle neck evolution: chasing the Hox code by vertebral morphology
The unparalleled ability of turtle neck retraction is possible in three different modes, which characterize stem turtles, living side-necked (Pleurodira), and hidden-necked (Cryptodira) turtles, respectively. Despite the conservatism in vertebral count among turtles, there is significant functional and morphological regionalization in the cervical vertebral column. Since Hox genes play a fundamental role in determining the differentiation in vertebra morphology and based on our reconstruction of evolutionary genetics in deep time, we hypothesize genetic differences among the turtle groups and between turtles and other land vertebrates. We correlated anterior Hox gene expression and the quantifiable shape of the vertebrae to investigate the morphological modularity in the neck across living and extinct turtles. This permitted the reconstruction of the hypothetical ancestral Hox code pattern of the whole turtle clade. The scenario of the evolution of axial patterning in turtles indicates shifts in the spatial expression of HoxA-5 in relation to the reduction of cervical ribs in modern turtles and of HoxB-5 linked with a lower morphological differentiation between the anterior cervical vertebrae observed in cryptodirans. By comparison with the mammalian pattern, we illustrate how the fixed count of eight cervical vertebrae in turtles resulted from the emergence of the unique turtle shell
