1,214 research outputs found
Inclusive double-quarkonium production at the Large Hadron Collider
Based on the nonrelativistic QCD (NRQCD) factorization formalism, we
investigate inclusive productions of two spin-triplet S-wave quarkonia
pp->2J/psi+X, 2Upsilon+X, and J/psi+Upsilon+X at the CERN Large Hadron
Collider. The total production rates integrated over the rapidity (y) and
transverse-momentum (p_T) ranges |y|<2.4 and p_T<50 GGeV are predicted to be
sigma[pp->2J/psi+X] = 22 (35) nb, sigma[pp->2Upsilon+X] = 24 (49) pb, and
sigma[pp->J/psi+Upsilon+X] = 7 (13) pb at the center-of-momentum energy sqrt{s}
= 7 (14) TeV. In order to provide predictions that can be useful in both small-
and large-p_T regions, we do not employ the fragmentation approximation and we
include the spin-triplet S-wave color-singlet and color-octet channels for each
quarkonium final state at leading order in the strong coupling. The p_T
distributions of pp->2J/psi+X and 2Upsilon+X in the low-p_T region are
dominated by the color-singlet contributions. At leading order in the strong
coupling, the color-singlet channel is absent for pp->J/psi+Upsilon+X.
Therefore, the process pp->J/psi+Upsilon+X may provide a useful probe to the
color-octet mechanism of NRQCD.Comment: 26 pages, 7 figures, 3 tables, version published in JHE
Testing A (Stringy) Model of Quantum Gravity
I discuss a specific model of space-time foam, inspired by the modern
non-perturbative approach to string theory (D-branes). The model views our
world as a three brane, intersecting with D-particles that represent stringy
quantum gravity effects, which can be real or virtual. In this picture, matter
is represented generically by (closed or open) strings on the D3 brane
propagating in such a background. Scattering of the (matter) strings off the
D-particles causes recoil of the latter, which in turn results in a distortion
of the surrounding space-time fluid and the formation of (microscopic, i.e.
Planckian size) horizons around the defects. As a mean-field result, the
dispersion relation of the various particle excitations is modified, leading to
non-trivial optical properties of the space time, for instance a non-trivial
refractive index for the case of photons or other massless probes. Such models
make falsifiable predictions, that may be tested experimentally in the
foreseeable future. I describe a few such tests, ranging from observations of
light from distant gamma-ray-bursters and ultra high energy cosmic rays, to
tests using gravity-wave interferometric devices and terrestrial particle
physics experients involving, for instance, neutral kaons.Comment: 25 pages LATEX, four figures incorporated, uses special proceedings
style. Invited talk at the third international conference on Dark Matter in
Astro and Particle Physics, DARK2000, Heidelberg, Germany, July 10-15 200
Quantum theory's last challenge
Quantum mechanics is now 100 years old and still going strong. Combining
general relativity with quantum mechanics is the last hurdle to be overcome in
the "quantum revolution".Comment: (9 pages, LaTex) This is the preprint version of an article that
appeared in the issue 6813 (volume 408) of Nature, as part of a 3-article
celebration of the 100th anniversary of Planck's solution of the
black-body-radiation proble
QCD corrections to plus -boson production at the LHC
The associated production at the LHC is an important process in
investigating the color-octet mechanism of non-relativistic QCD in describing
the processes involving heavy quarkonium. We calculate the next-to-leading
order (NLO) QCD corrections to the associated production at the
LHC within the factorization formalism of nonrelativistic QCD, and provide the
theoretical predictions for the distribution of the transverse
momentum. Our results show that the differential cross section at the
leading-order is significantly enhanced by the NLO QCD corrections. We conclude
that the LHC has the potential to verify the color-octet mechanism by measuring
the production events.Comment: 14 page revtex, 5 eps figures, to appear in JHEP. fig5 and the
corresponding analysis are correcte
GRBs Neutrinos as a Tool to Explore Quantum Gravity induced Lorentz Violation
Lorentz Invariance Violation (LIV) arises in various quantum-gravity
theories. As the typical energy for quantum gravity is the Planck mass,
, LIV will, most likely, be manifested at very high energies that are
not accessible on Earth in the foreseeable future. One has to turn to
astronomical observations. Time of flight measurement from different
astronomical sources set current limits on the energy scale of possible LIV to
(for n=1 models) and (for n=2). According to
current models Gamma-Ray Bursts (GRBs) are accompanied by bursts of high energy
(\gsim 100TeV) neutrinos. At this energy range the background level of
currently constructed neutrino detectors is so low that a detection of a single
neutrino from the direction of a GRB months or even years after the burst would
imply an association of the neutrino with the burst and will establish a
measurement of a time of flight delay. Such time of flight measurements provide
the best way to observe (or set limits) on LIV. Detection of a single GRB
neutrino would open a new window on LIV and would improve current limits by
many orders of magnitude
On Glauber modes in Soft-Collinear Effective Theory
Gluon interactions involving spectator partons in collisions at hadronic
machines are investigated. We find a class of examples in which a mode, called
Glauber gluons, must be introduced to the effective theory for consistency.Comment: 19 pages, three figures. Uses JHEP3.cl
The immune response in Influenza A-S. pneumoniae coinfection
Streptococcus pneumoniae coinfection is a major cause of influenza-associated mortality. In this thesis the underlying disease mechanisms and the role of the immune response are investigated in a mouse model. Coinfection with otherwise mild influenza and S. pneumoniae strains is shown to synergistically cause mortality and severe disease. Loss of bacterial but not viral control, and subsequent outgrowth, is identified as the main driver of mortality. Influenza-mediated immune impairment and lung damage have been proposed as mechanisms of coinfection. Here the aspects of the immune response profiled are not impaired; in contrast, coinfection induces a strong proinflammatory cytokine response and an influx of functional neutrophils. Depletion of neutrophils or TNF-α blockade exacerbates disease and bacterial outgrowth, showing these aspects of the immune response are protective. In addition to profiling the downstream response to bacterial outgrowth, the upstream causes of bacterial colonization are investigated. CCR2-/- mice are shown to be more resistant to coinfection. Influenza-infected CCR2-/- lungs lack inflammatory monocytes and exhibit reduced damage prior to coinfection. How inflammatory monocyte derived damage is mediated is investigated. Blockade of TRAIL - a cell-death inducing ligand - during the viral phase prior to coinfection ameliorates disease. Inflammatory monocytes are shown to comprise the majority of TRAIL-expressing cells during influenza infection, and TRAIL expression is largely absent in CCR2-/- mice. Therefore a mechanism is proposed for coinfection where influenza-induced TRAIL-expressing inflammatory monocytes cause lung damage, allowing bacterial colonization, while neutrophils and TNF-α counter subsequent bacterial outgrowth. Other aspects of coinfection, such as bacterial spread to the brain and other facets of the immune response, are also investigated
Central Exclusive Production in QCD
We investigate the theoretical description of the central exclusive
production process, h1+h2 -> h1+X+h2. Taking Higgs production as an example, we
sum logarithmically enhanced corrections appearing in the perturbation series
to all orders in the strong coupling. Our results agree with those originally
presented by Khoze, Martin and Ryskin except that the scale appearing in the
Sudakov factor, mu=0.62 \sqrt{\hat{s}}, should be replaced with
mu=\sqrt{\hat{s}}, where \sqrt{\hat{s}} is the invariant mass of the centrally
produced system. We confirm this result using a fixed-order calculation and
show that the replacement leads to approximately a factor 2 suppression in the
cross-section for central system masses in the range 100-500 GeV.Comment: 41 pages, 19 figures; minor typos fixed; version published in JHE
Two real parton contributions to non-singlet kernels for exclusive QCD DGLAP evolution
Results for the two real parton differential distributions needed for
implementing a next-to-leading order (NLO) parton shower Monte Carlo are
presented. They are also integrated over the phase space in order to provide
solid numerical control of the MC codes and for the discussion of the
differences between the standard factorization and Monte Carlo
implementation at the level of inclusive NLO evolution kernels. Presented
results cover the class of non-singlet diagrams entering into NLO kernels. The
classic work of Curci-Furmanski-Pertonzio was used as a guide in the
calculations.Comment: 34 pages, 3 figure
Light-Cone Quantization and Hadron Structure
In this talk, I review the use of the light-cone Fock expansion as a
tractable and consistent description of relativistic many-body systems and
bound states in quantum field theory and as a frame-independent representation
of the physics of the QCD parton model. Nonperturbative methods for computing
the spectrum and LC wavefunctions are briefly discussed. The light-cone Fock
state representation of hadrons also describes quantum fluctuations containing
intrinsic gluons, strangeness, and charm, and, in the case of nuclei, "hidden
color". Fock state components of hadrons with small transverse size, such as
those which dominate hard exclusive reactions, have small color dipole moments
and thus diminished hadronic interactions; i.e., "color transparency". The use
of light-cone Fock methods to compute loop amplitudes is illustrated by the
example of the electron anomalous moment in QED. In other applications, such as
the computation of the axial, magnetic, and quadrupole moments of light nuclei,
the QCD relativistic Fock state description provides new insights which go well
beyond the usual assumptions of traditional hadronic and nuclear physics.Comment: LaTex 36 pages, 3 figures. To obtain a copy, send e-mail to
[email protected]
- …
