27 research outputs found

    Fractionated 131I anti-CEA radioimmunotherapy: effects on xenograft tumour growth and haematological toxicity in mice

    Get PDF
    Dose fractionation has been proposed as a method to improve the therapeutic ratio of radioimmunotherapy (RIT). This study compared a single administration of 7.4 MBq 131I-anti-CEA antibody given on day 1 with the same total activity given as fractionated treatment: 3.7 MBq (days 1 and 3), 2.4 MBq (days 1, 3, and 5) or 1.8 MBq (days 1, 3, 5, and 8). Studies in nude mice, bearing the human colorectal xenograft LS174T, showed that increasing the fractionation significantly reduced the efficacy of therapy. Fractionation was associated with a decrease in systemic toxicity as assessed by weight, but did not lead to any significant decrease in acute haematological toxicity. Similarly, no significant decrease in marrow toxicity, as assessed by colony-forming unit assays for granulocytes and macrophages (CFUgm), was seen. However, there was a significant depression of CFUgm counts when all treated animals were compared with untreated controls, suggesting that treatment did suppress marrow function. In conclusion, in this tumour model system, fractionated RIT causes less systemic toxicity, but is also less effective at treating tumours

    Tau-based treatment strategies in neurodegenerative diseases

    Full text link

    The Role of Tau in the Post-synapse

    No full text
    It is well documented that tauopathy is involved in various forms of neurodegenerative disease. However, there is a huge gap in terms of our understanding of the neurophysiological roles of tau, and how these can be aberrantly regulated by pathological processes. Tau is enriched in the axon but is also localized to synapses. The finding of synaptically localised tau has undoubtedly created more questions than it has answered. What is the physiological role of tau at the synapse? Whether and how does tau interact with and effect other synaptic proteins to mediate this function? Are these effects regulated by post-translational modifications of tau, such as phosphorylation? Such questions require significant attention from the scientific community if we are to resolve this critical aspect of tau biology. This chapter will describe our current understanding of synaptic tau and its functions and illuminate the numerous remaining challenges in this evolving research area.</p
    corecore