1,571 research outputs found

    Cathodo- and radioluminescence of Tm3+^{3+}:YAG and Nd3+^{3+}:YAG in an extended wavelength range

    Get PDF
    We have studied the cathodo- and radioluminescence of Nd:YAG and of Tm:YAG single crystals in an extended wavelength range up to 5μ\approx 5\,\mum in view of developing a new kind of detector for low-energy, low-rate energy deposition events. Whereas the light yield in the visible range is as large as 104\approx 10^{4}\,photons/MeV, in good agreement with literature results, in the infrared range we have found a light yield 5×104\approx 5\times 10^{4}\,photons/MeV, thereby proving that ionizing radiation is particularly efficient in populating the low lying levels of rare earth doped crystals.Comment: submitted for publication in Journal of Luminescenc

    A new technique for infrared scintillation measurements

    Get PDF
    We propose a new technique to measure the infrared scintillation light yield of rare earth (RE) doped crystals by comparing it to near UV-visible scintillation of a calibrated Pr:(Lu0.75_{0.75}Y0.25_{0.25})3_{3}Al5_5O12_{12} sample. As an example, we apply this technique to provide the light yield in visible and infrared range up to \SI{1700}{nm} of this crystal.Comment: submitted to NIM

    Particle detection through the quantum counter concept in YAG:Er3+^{3+}

    Get PDF
    We report about a novel scheme for particle detection based on the infrared quantum counter concept. Its operation consists of a two-step excitation process of a four level system, that can be realized in rare earth-doped crystals when a cw pump laser is tuned to the transition from the second to the fourth level. The incident particle raises the atoms of the active material into a low lying, metastable energy state, triggering the absorption of the pump laser to a higher level. Following a rapid non-radiative decay to a fluorescent level, an optical signal is observed with a conventional detectors. In order to demonstrate the feasibility of such a scheme, we have investigated the emission from the fluorescent level 4^4S3/2_{3/2} (540 nm band) in an Er3+^{3+}-doped YAG crystal pumped by a tunable titanium sapphire laser when it is irradiated with 60 keV electrons delivered by an electron gun. We have obtained a clear signature this excitation increases the 4I13/2^{4}I_{13/2} metastable level population that can efficiently be exploited to generate a detectable optical signal

    Laser induced fluorescence for axion dark matter detection: a feasibility study in YLiF4_4:Er3+^{3+}

    Get PDF
    We present a detection scheme to search for QCD axion dark matter, that is based on a direct interaction between axions and electrons explicitly predicted by DFSZ axion models. The local axion dark matter field shall drive transitions between Zeeman-split atomic levels separated by the axion rest mass energy mac2m_a c^2. Axion-related excitations are then detected with an upconversion scheme involving a pump laser that converts the absorbed axion energy (\sim hundreds of μ\mueV) to visible or infrared photons, where single photon detection is an established technique. The proposed scheme involves rare-earth ions doped into solid-state crystalline materials, and the optical transitions take place between energy levels of 4fN4f^N electron configuration. Beyond discussing theoretical aspects and requirements to achieve a cosmologically relevant sensitivity, especially in terms of spectroscopic material properties, we experimentally investigate backgrounds due to the pump laser at temperatures in the range 1.94.21.9-4.2 K. Our results rule out excitation of the upper Zeeman component of the ground state by laser-related heating effects, and are of some help in optimizing activated material parameters to suppress the multiphonon-assisted Stokes fluorescence.Comment: 8 pages, 5 figure

    Evidence for core-hole-mediated inelastic x-ray scattering from metallic Fe1.087_{1.087}Te

    Get PDF
    We present a detailed analysis of resonant inelastic scattering (RIXS) from Fe1.087_{1.087}Te with unprecedented energy resolution. In contrast to the sharp peaks typically seen in insulating systems at the transition metal L3L_3 edge, we observe spectra which show different characteristic features. For low energy transfer, we experimentally observe theoretically predicted many-body effects of resonant Raman scattering from a non-interacting gas of fermions. Furthermore, we find that limitations to this many-body electron-only theory are realized at high Raman shift, where an exponential lineshape reveals an energy scale not present in these considerations. This regime, identified as emission, requires considerations of lattice degrees of freedom to understand the lineshape. We argue that both observations are intrinsic general features of many-body physics of metals.Comment: 4 pages, 4 figure

    Energy and symmetry of dddd excitations in undoped layered cuprates measured by Cu L3L_3 resonant inelastic x-ray scattering

    Get PDF
    We measured high resolution Cu L3L_3 edge resonant inelastic x-ray scattering (RIXS) of the undoped cuprates La2_2CuO4_4, Sr2_2CuO2_2Cl2_2, CaCuO2_2 and NdBa2_2Cu3_3O6_6. The dominant spectral features were assigned to dddd excitations and we extensively studied their polarization and scattering geometry dependence. In a pure ionic picture, we calculated the theoretical cross sections for those excitations and used them to fit the experimental data with excellent agreement. By doing so, we were able to determine the energy and symmetry of Cu-3dd states for the four systems with unprecedented accuracy and confidence. The values of the effective parameters could be obtained for the single ion crystal field model but not for a simple two-dimensional cluster model. The firm experimental assessment of dddd excitation energies carries important consequences for the physics of high TcT_c superconductors. On one hand, having found that the minimum energy of orbital excitation is always 1.4\geq 1.4 eV, i.e., well above the mid-infrared spectral range, leaves to magnetic excitations (up to 300 meV) a major role in Cooper pairing in cuprates. On the other hand, it has become possible to study quantitatively the effective influence of dddd excitations on the superconducting gap in cuprates.Comment: 22 pages, 11 figures, 1 tabl

    Measurement of magnetic excitations in the two-dimensional antiferromagnetic Sr2CuO2Cl2 insulator using resonant x-ray scattering:Evidence for extended interactions

    Get PDF
    Using high-resolution resonant inelastic x-ray scattering (RIXS), we performed a momentum-resolved study of magnetic excitations in the model spin-1/2 2D antiferromagnetic insulator Sr_2CuCl_2O_2. We identify both a single-spin-wave feature and a multi-magnon continuum, and show that the X-ray polarization can be used to distinguish these two contributions in the cross-section. The spin-waves display a large (70 meV) dispersion between the zone-boundary points (π\pi,0) and (π\pi/2,π\pi/2). Employing an extended tt-tt'-t"t"-UU one-band Hubbard model, we find significant electronic hopping beyond nearest-neighbor Cu ions. We conclude that sizeable extended magnetic interactions are present in \scoc{} and probably important in all undoped cuprates.Comment: 4 pages, 4 figure

    Influence of apical oxygen on the extent of in-plane exchange interaction in cuprate superconductors

    Get PDF
    In high Tc superconductors the magnetic and electronic properties are determined by the probability that valence electrons virtually jump from site to site in the CuO2 planes, a mechanism opposed by on-site Coulomb repulsion and favored by hopping integrals. The spatial extent of the latter is related to transport properties, including superconductivity, and to the dispersion relation of spin excitations (magnons). Here, for three antiferromagnetic parent compounds (single-layer Bi2Sr0.99La1.1CuO6+delta, double-layer Nd1.2Ba1.8Cu3O6 and infinite-layer CaCuO2) differing by the number of apical atoms, we compare the magnetic spectra measured by resonant inelastic x-ray scattering over a significant portion of the reciprocal space and with unprecedented accuracy. We observe that the absence of apical oxygens increases the in-plane hopping range and, in CaCuO2, it leads to a genuine 3D exchange-bond network. These results establish a corresponding relation between the exchange interactions and the crystal structure, and provide fresh insight into the materials dependence of the superconducting transition temperature.Comment: 9 pages, 4 figures, 1 Table, 42 reference
    corecore