7 research outputs found
The nuclear receptors of Biomphalaria glabrata and Lottia gigantea: Implications for developing new model organisms
© 2015 Kaur et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedNuclear receptors (NRs) are transcription regulators involved in an array of diverse physiological functions including key roles in endocrine and metabolic function. The aim of this study was to identify nuclear receptors in the fully sequenced genome of the gastropod snail, Biomphalaria glabrata, intermediate host for Schistosoma mansoni and compare these to known vertebrate NRs, with a view to assessing the snail's potential as a invertebrate model organism for endocrine function, both as a prospective new test organism and to elucidate the fundamental genetic and mechanistic causes of disease. For comparative purposes, the genome of a second gastropod, the owl limpet, Lottia gigantea was also investigated for nuclear receptors. Thirty-nine and thirty-three putative NRs were identified from the B. glabrata and L. gigantea genomes respectively, based on the presence of a conserved DNA-binding domain and/or ligand-binding domain. Nuclear receptor transcript expression was confirmed and sequences were subjected to a comparative phylogenetic analysis, which demonstrated that these molluscs have representatives of all the major NR subfamilies (1-6). Many of the identified NRs are conserved between vertebrates and invertebrates, however differences exist, most notably, the absence of receptors of Group 3C, which includes some of the vertebrate endocrine hormone targets. The mollusc genomes also contain NR homologues that are present in insects and nematodes but not in vertebrates, such as Group 1J (HR48/DAF12/HR96). The identification of many shared receptors between humans and molluscs indicates the potential for molluscs as model organisms; however the absence of several steroid hormone receptors indicates snail endocrine systems are fundamentally different.The National Centre for the Replacement, Refinement and Reduction of Animals in Research, Grant Ref:G0900802 to CSJ, LRN, SJ & EJR [www.nc3rs.org.uk]
Nematode and Arthropod Genomes Provide New Insights into the Evolution of Class 2 B1 GPCRs
Nematodes and arthropods are the most speciose animal groups and possess Class 2 B1 G-protein coupled receptors
(GPCRs). Existing models of invertebrate Class 2 B1 GPCR evolution are mainly centered on Caenorhabditis elegans and
Drosophila melanogaster and a few other nematode and arthropod representatives. The present study reevaluates the
evolution of metazoan Class 2 B1 GPCRs and orthologues by exploring the receptors in several nematode and arthropod
genomes and comparing them to the human receptors. Three novel receptor phylogenetic clusters were identified and
designated cluster A, cluster B and PDF-R-related cluster. Clusters A and B were identified in several nematode and
arthropod genomes but were absent from D. melanogaster and Culicidae genomes, whereas the majority of the members of
the PDF-R-related cluster were from nematodes. Cluster A receptors were nematode and arthropod-specific but shared a
conserved gene environment with human receptor loci. Cluster B members were orthologous to human GCGR, PTHR and
Secretin members with which they probably shared a common origin. PDF-R and PDF-R related clusters were present in
representatives of both nematodes and arthropods. The results of comparative analysis of GPCR evolution and diversity in
protostomes confirm previous notions that C. elegans and D. melanogaster genomes are not good representatives of
nematode and arthropod phyla. We hypothesize that at least four ancestral Class 2 B1 genes emerged early in the metazoan
radiation, which after the protostome-deuterostome split underwent distinct selective pressures that resulted in duplication
and deletion events that originated the current Class 2 B1 GPCRs in nematode and arthropod genomes.This work was supported by the Portuguese Foundation for Science and Technology (FCT) project PTDC/BIA-BCM/114395/2009, by the European
Regional Development Fund through COMPETE and FCT under the project ‘‘PEst-C/MAR/LA0015/2011.’’ RCF is in receipt of an FCT grant (SFRH/BPD/89811/2012)
and JCRC is supported by auxiliary research contract FCT Pluriannual funds attributed to CCMAR. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript
