30 research outputs found
Microbial fuel cells: a green and alternative source for bioenergy production
Microbial fuel cell (MFC) represents one of the green technologies for the production of bioenergy. MFCs using microalgae produce bioenergy by converting solar energy into electrical energy as a function of metabolic and anabolic pathways of the cells. In the MFCs with bacteria, bioenergy is generated as a result of the organic substrate oxidation. MFCs have received high attention from researchers in the last years due to the simplicity of the process, the absence in toxic by-products, and low requirements for the algae growth. Many studies have been conducted on MFC and investigated the factors affecting the MFC performance. In the current chapter, the performance of MFC in producing bioenergy as well as the factors which influence the efficacy of MFCs is discussed. It appears that the main factors affecting MFC’s performance include bacterial and algae species, pH, temperature, salinity, substrate, mechanism of electron transfer in an anodic chamber, electrodes materials, surface area, and electron acceptor in a cathodic chamber. These factors are becoming more influential and might lead to overproduction of bioenergy when they are optimized using response surface methodology (RSM)
A single blind randomized phase 3 study to evaluate safety and immunogenicity of inactivated hepatitis A vaccine (HAPIBEVTM) in 1-15 years-old healthy hepatitis A vaccine-naïve children
A multicenter, single-blind, randomized, phase-2/3 study to evaluate immunogenicity and safety of a single intramuscular dose of biological E’s Vi-capsular polysaccharide-CRM<sub>197</sub> conjugate typhoid vaccine (TyphiBEV<sup>TM</sup>) in healthy infants, children, and adults in comparison with a licensed comparator
A multicenter, single-blind, randomized, phase-2/3 study to evaluate immunogenicity and safety of a single intramuscular dose of biological E’s Vi-capsular polysaccharide-CRM197 conjugate typhoid vaccine (TyphiBEVTM) in healthy infants, children, and adults in comparison with a licensed comparator
The current scenario of typhoid fever warrants early prevention with typhoid conjugate vaccines in susceptible populations to provide lifelong protection. We conducted a multicenter, single-blind, randomized, Phase 2/3 study to assess the immunogenicity and safety of Biological E’s Typhoid Vi-CRM197 conjugate vaccine (TyphiBEVTM) compared to Vi-TT conjugate vaccine manufactured by Bharat Biotech International Limited (Typbar-TCV; licensed comparator) in healthy infants, children, and adults from India. The study’s primary objective was to assess the non-inferiority of TyphiBEVTM in terms of the difference in the proportion of subjects seroconverted with a seroconversion threshold value of ≥2.0 µg/mL against Typbar-TCV. A total of 622 healthy subjects (311 each in both vaccine groups) were randomized and received the single dose of the study vaccine. The TyphiBEVTM group demonstrated noninferiority compared to the Typbar-TCV group at Day 42. The lower 2-sided 95% confidence interval limit of the group difference was −.34%, which met the non-inferiority criteria of ≥10.0%. The geometric mean concentration (24.79 µg/mL vs. 26.58 µg/mL) and proportion of subjects who achieved ≥4-fold increase in antiVi IgG antibody concentrations (96.95% vs. 97.64%) at Day 42 were comparable between the TyphiBEVTM and Typbar-TCV vaccine groups. No apparent difference was observed in the safety profile between both vaccine groups. All adverse events reported were mild or moderate in intensity in all age subsets. This data demonstrates that TyphiBEVTM is non-inferior to TypbarTCV in terms of immunogenicity, and the overall safety and reactogenicity in healthy infants, children, and adults studied from India was comparable
