338 research outputs found
Search for Second-Generation Scalar Leptoquarks in Collisions at =1.96 TeV
Results on a search for pair production of second generation scalar
leptoquark in collisions at =1.96 TeV are reported. The
data analyzed were collected by the CDF detector during the 2002-2003 Tevatron
Run II and correspond to an integrated luminosity of 198 pb. Leptoquarks
(LQ) are sought through their decay into (charged) leptons and quarks, with
final state signatures represented by two muons and jets and one muon, large
transverse missing energy and jets. We observe no evidence for production
and derive 95% C.L. upper limits on the production cross sections as well
as lower limits on their mass as a function of , where is the
branching fraction for .Comment: 9 pages (3 author list) 5 figure
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers
Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program
Measurement of the Dipion Mass Spectrum in X(3872) -> J/Psi Pi+ Pi- Decays
We measure the dipion mass spectrum in X(3872)--> J/Psi Pi+ Pi- decays using
360 pb-1 of pbar-p collisions at 1.96 TeV collected with the CDF II detector.
The spectrum is fit with predictions for odd C-parity (3S1, 1P1, and 3DJ)
charmonia decaying to J/Psi Pi+ Pi-, as well as even C-parity states in which
the pions are from Rho0 decay. The latter case also encompasses exotic
interpretations, such as a D0-D*0Bar molecule. Only the 3S1 and J/Psi Rho
hypotheses are compatible with our data. Since 3S1 is untenable on other
grounds, decay via J/Psi Rho is favored, which implies C=+1 for the X(3872).
Models for different J/Psi-Rho angular momenta L are considered. Flexibility in
the models, especially the introduction of Rho-Omega interference, enable good
descriptions of our data for both L=0 and 1.Comment: 7 pages, 4 figures -- Submitted to Phys. Rev. Let
Search for ZZ and ZW Production in ppbar Collisions at sqrt(s) = 1.96 TeV
We present a search for ZZ and ZW vector boson pair production in ppbar
collisions at sqrt(s) = 1.96 TeV using the leptonic decay channels ZZ --> ll nu
nu, ZZ --> l l l' l' and ZW --> l l l' nu. In a data sample corresponding to an
integrated luminosity of 194 pb-1 collected with the Collider Detector at
Fermilab, 3 candidate events are found with an expected background of 1.0 +/-
0.2 events. We set a 95% confidence level upper limit of 15.2 pb on the cross
section for ZZ plus ZW production, compared to the standard model prediction of
5.0 +/- 0.4 pb.Comment: 7 pages, 2 figures. This version is accepted for publication by Phys.
Rev. D Rapid Communication
Search for New Physics in Lepton + Photon + X Events with L=305 pb-1 of ppbar Collisions at roots=1.96 TeV
We present results of a search for anomalous production of events containing
a charged lepton (either electron or muon) and a photon, both with high
transverse momentum, accompanied by additional signatures, X, including missing
transverse energy (MET) and additional leptons and photons. We use the same
kinematic selection criteria as in a previous CDF search, but with a
substantially larger data set, 305 pb-1, a ppbar collision energy of 1.96 TeV,
and the upgraded CDF II detector. We find 42 Lepton+Photon+MET events versus a
standard model expectation of 37.3 +- 5.4 events. The level of excess observed
in Run I, 16 events with an expectation of 7.6 +- 0.7 events (corresponding to
a 2.7 sigma effect), is not supported by the new data. In the signature of
Multi-Lepton+Photon+X we observe 31 events versus an expectation of 23.0 +- 2.7
events. In this sample we find no events with an extra photon or MET and so
find no events like the one ee+gg+MET event observed in Run I.Comment: 7 pages, 3 figures, 1 table. Accepted to PR
Molecular and functional aspects of menstruation in the macaque
Much of our understanding of the molecular control of menstruation arises from laboratory models that experimentally recapitulate some, but not all, aspects of uterine bleeding observed in women. These models include: in vitro culture of endometrial explants or isolated endometrial cells, transplantation of human endometrial tissue into immunodeficient mice and the induction of endometrial breakdown in appropriately pretreated mice. Each of these models has contributed to our understanding of molecular and cellular mechanisms of menstruation, but nonhuman primates, especially macaques, are the animal model of choice for evaluating therapies for menstrual disorders. In this chapter we review some basic aspects of menstruation, with special emphasis on the macaque model and its relevance to the clinical issues of irregular and heavy menstrual bleeding (HMB)
Factors influencing p53 expression in ovarian cancer as a biomarker of clinical outcome in multicentre studies
The prognostic impact of p53 immunostaining in a large series of tumours from epithelial ovarian cancer patients in a two-centre study was analysed. The study population (n=476) comprised of a retrospective series of 188 patients (Dutch cohort) and a prospective series of 288 patients (Scottish cohort) enrolled in clinical trials. P53 expression was determined by immunohistochemistry on tissue microarrays. Association with progression-free survival (PFS) and overall survival (OS) was analysed by univariate and multivariate Cox regression analysis. Aberrant p53 overexpression was significantly associated with PFS in the Dutch and Scottish cohorts (P=0.001 and 0.038, respectively), but not with OS in univariate analysis. In multivariate analysis, when the two groups were combined and account taken of clinical factors and country of origin of the cohort, p53 expression was not an independent prognostic predictor of PFS or OS. In this well-powered study with minimal methodological variability, p53 immunostaining is not an independent prognostic marker of clinical outcome in epithelial ovarian cancer. The data demonstrate the importance of methodological standardisation, particularly defining patient characteristics and survival end-point data, if biomarker data from multicentre studies are to be combined
Entanglement entropy of black holes
The entanglement entropy is a fundamental quantity which characterizes the
correlations between sub-systems in a larger quantum-mechanical system. For two
sub-systems separated by a surface the entanglement entropy is proportional to
the area of the surface and depends on the UV cutoff which regulates the
short-distance correlations. The geometrical nature of the entanglement entropy
calculation is particularly intriguing when applied to black holes when the
entangling surface is the black hole horizon. I review a variety of aspects of
this calculation: the useful mathematical tools such as the geometry of spaces
with conical singularities and the heat kernel method, the UV divergences in
the entropy and their renormalization, the logarithmic terms in the
entanglement entropy in 4 and 6 dimensions and their relation to the conformal
anomalies. The focus in the review is on the systematic use of the conical
singularity method. The relations to other known approaches such as 't Hooft's
brick wall model and the Euclidean path integral in the optical metric are
discussed in detail. The puzzling behavior of the entanglement entropy due to
fields which non-minimally couple to gravity is emphasized. The holographic
description of the entanglement entropy of the black hole horizon is
illustrated on the two- and four-dimensional examples. Finally, I examine the
possibility to interpret the Bekenstein-Hawking entropy entirely as the
entanglement entropy.Comment: 89 pages; an invited review to be published in Living Reviews in
Relativit
Search for Higgs Bosons Decaying into b anti-b and Produced in Association with a Vector Boson in Proton-Antiproton Collisions at 1.8 TeV
We present a new search for production, where is a scalar
Higgs boson decaying into with branching ratio , and is a
boson decaying into , , or .
This search is then combined with previous searches for where is a
boson or a hadronically decaying . The data sample consists of
pb of collisions at TeV
accumulated by the Collider Detector at Fermilab. Observing no evidence of a
signal, we set 95% Bayesian credibility level upper limits on
. For masses of 90, 110 and 130
GeV/, the limits are 7.8, 7.2, and 6.6 pb respectively.Comment: 6 pages, 3 figures, to be submiited to PR
- …
