2,422 research outputs found
Accretion Processes for General Spherically Symmetric Compact Objects
We investigate the accretion process for different spherically symmetric
space-time geometries for a static fluid. We analyse this procedure using the
most general black hole metric ansatz. After that, we examine the accretion
process for specific spherically symmetric metrics obtaining the velocity of
the sound during the process and the critical speed of the flow of the fluid
around the black hole. In addition, we study the behaviour of the rate of
change of the mass for each chosen metric for a barotropic fluid.Comment: 10 pages, 15 figures, v2 accepted for publication in 'European
Physical Journal C
Probing natural SUSY from stop pair production at the LHC
We consider the natural supersymmetry scenario in the framework of the
R-parity conserving minimal supersymmetric standard model (called natural MSSM)
and examine the observability of stop pair production at the LHC. We first scan
the parameters of this scenario under various experimental constraints,
including the SM-like Higgs boson mass, the indirect limits from precision
electroweak data and B-decays. Then in the allowed parameter space we study the
stop pair production at the LHC followed by the stop decay into a top quark
plus a lightest neutralino or into a bottom quark plus a chargino. From
detailed Monte Carlo simulations of the signals and backgrounds, we find the
two decay modes are complementary to each other in probing the stop pair
production, and the LHC with TeV and 100 luminosity is
capable of discovering the stop predicted in natural MSSM up to 450 GeV. If no
excess events were observed at the LHC, the 95% C.L. exclusion limits of the
stop masses can reach around 537 GeV.Comment: 19 pages, 10 figures, version accepted by JHE
Gravitational Microlensing Evidence for a Planet Orbiting a Binary Star System
The study of extra-solar planetary systems has emerged as a new discipline of
observational astronomy in the past few years with the discovery of a number of
extra-solar planets. The properties of most of these extra-solar planets were
not anticipated by theoretical work on the formation of planetary systems. Here
we report observations and light curve modeling of gravitational microlensing
event MACHO-97-BLG-41, which indicates that the lens system consists of a
planet orbiting a binary star system. According to this model, the mass ratio
of the binary star system is 3.8:1 and the stars are most likely to be a late K
dwarf and an M dwarf with a separation of about 1.8 AU. A planet of about 3
Jupiter masses orbits this system at a distance of about 7 AU. If our
interpretation of this light curve is correct, it represents the first
discovery of a planet orbiting a binary star system and the first detection of
a Jovian planet via the gravitational microlensing technique. It suggests that
giant planets may be common in short period binary star systems.Comment: 11 pages, with 1 color and 2 b/w Figures included (published version
Solution structure of a repeated unit of the ABA-1 nematode polyprotein allergen of ascaris reveals a novel fold and two discrete lipid-binding sites
Parasitic nematode worms cause serious health problems in humans and other animals. They can induce allergic-type immune responses, which can be harmful but may at the same time protect against the infections. Allergens are proteins that trigger allergic reactions and these parasites produce a type that is confined to nematodes, the nematode polyprotein allergens (NPAs). These are synthesized as large precursor proteins comprising repeating units of similar amino acid sequence that are subsequently cleaved into multiple copies of the allergen protein. NPAs bind small lipids such as fatty acids and retinol (Vitamin A) and probably transport these sensitive and insoluble compounds between the tissues of the worms. Nematodes cannot synthesize these lipids, so NPAs may also be crucial for extracting nutrients from their hosts. They may also be involved in altering immune responses by controlling the lipids by which the immune and inflammatory cells communicate. We describe the molecular structure of one unit of an NPA, the well-known ABA-1 allergen of Ascaris and find its structure to be of a type not previously found for lipid-binding proteins, and we describe the unusual sites where lipids bind within this structur
How the other half lives: CRISPR-Cas's influence on bacteriophages
CRISPR-Cas is a genetic adaptive immune system unique to prokaryotic cells
used to combat phage and plasmid threats. The host cell adapts by incorporating
DNA sequences from invading phages or plasmids into its CRISPR locus as
spacers. These spacers are expressed as mobile surveillance RNAs that direct
CRISPR-associated (Cas) proteins to protect against subsequent attack by the
same phages or plasmids. The threat from mobile genetic elements inevitably
shapes the CRISPR loci of archaea and bacteria, and simultaneously the
CRISPR-Cas immune system drives evolution of these invaders. Here we highlight
our recent work, as well as that of others, that seeks to understand phage
mechanisms of CRISPR-Cas evasion and conditions for population coexistence of
phages with CRISPR-protected prokaryotes.Comment: 24 pages, 8 figure
Uterine selection of human embryos at implantation
Human embryos frequently harbor large-scale complex chromosomal errors that impede normal development. Affected embryos may fail to implant although many first breach the endometrial epithelium and embed in the decidualizing stroma before being rejected via mechanisms that are poorly understood. Here we show that developmentally impaired human embryos elicit an endoplasmic stress response in human decidual cells. A stress response was also evident upon in vivo exposure of mouse uteri to culture medium conditioned by low-quality human embryos. By contrast, signals emanating from developmentally competent embryos activated a focused gene network enriched in metabolic enzymes and implantation factors. We further show that trypsin, a serine protease released by pre-implantation embryos, elicits Ca2+ signaling in endometrial epithelial cells. Competent human embryos triggered short-lived oscillatory Ca2+ fluxes whereas low-quality embryos caused a heightened and prolonged Ca2+ response. Thus, distinct positive and negative mechanisms contribute to active selection of human embryos at implantation
Search for Second-Generation Scalar Leptoquarks in Collisions at =1.96 TeV
Results on a search for pair production of second generation scalar
leptoquark in collisions at =1.96 TeV are reported. The
data analyzed were collected by the CDF detector during the 2002-2003 Tevatron
Run II and correspond to an integrated luminosity of 198 pb. Leptoquarks
(LQ) are sought through their decay into (charged) leptons and quarks, with
final state signatures represented by two muons and jets and one muon, large
transverse missing energy and jets. We observe no evidence for production
and derive 95% C.L. upper limits on the production cross sections as well
as lower limits on their mass as a function of , where is the
branching fraction for .Comment: 9 pages (3 author list) 5 figure
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Measurement of the Dipion Mass Spectrum in X(3872) -> J/Psi Pi+ Pi- Decays
We measure the dipion mass spectrum in X(3872)--> J/Psi Pi+ Pi- decays using
360 pb-1 of pbar-p collisions at 1.96 TeV collected with the CDF II detector.
The spectrum is fit with predictions for odd C-parity (3S1, 1P1, and 3DJ)
charmonia decaying to J/Psi Pi+ Pi-, as well as even C-parity states in which
the pions are from Rho0 decay. The latter case also encompasses exotic
interpretations, such as a D0-D*0Bar molecule. Only the 3S1 and J/Psi Rho
hypotheses are compatible with our data. Since 3S1 is untenable on other
grounds, decay via J/Psi Rho is favored, which implies C=+1 for the X(3872).
Models for different J/Psi-Rho angular momenta L are considered. Flexibility in
the models, especially the introduction of Rho-Omega interference, enable good
descriptions of our data for both L=0 and 1.Comment: 7 pages, 4 figures -- Submitted to Phys. Rev. Let
Ribosomal S6 Kinase 2 (RSK2) Maintains Genomic Stability by Activating the Atm/p53-Dependent DNA Damage Pathway
10.1371/journal.pone.0074334PLoS ONE89-POLN
- …
