4,989 research outputs found
Black Hole Emission in String Theory and the String Phase of Black Holes
String theory properly describes black-hole evaporation. The quantum string
emission by Black Holes is computed. The black-hole temperature is the Hawking
temperature in the semiclassical quantum field theory (QFT) regime and becomes
the intrinsic string temperature, T_s, in the quantum (last stage) string
regime. The QFT-Hawking temperature T_H is upper bounded by the string
temperature T_S. The black hole emission spectrum is an incomplete gamma
function of (T_H - T_S). For T_H << T_S, it yields the QFT-Hawking emission.
For T_H \to T_S, it shows highly massive string states dominate the emission
and undergo a typical string phase transition to a microscopic `minimal' black
hole of mass M_{\min} or radius r_{\min} (inversely proportional to T_S) and
string temperature T_S. The string back reaction effect (selfconsistent black
hole solution of the semiclassical Einstein equations) is computed. Both, the
QFT and string black hole regimes are well defined and bounded.The string
`minimal' black hole has a life time tau_{min} simeq (k_B c)/(G hbar [T_S]^3).
The semiclassical QFT black hole (of mass M and temperature T_H) and the string
black hole (of mass M_{min} and temperature T_S) are mapped one into another by
a `Dual' transform which links classical/QFT and quantum string regimes.Comment: LaTex, 22 pages, Lectures delivered at the Chalonge School, Nato ASI:
Phase Transitions in the Early Universe: Theory and Observations. To appear
in the Proceedings, Editors H. J. de Vega, I. Khalatnikov, N. Sanchez.
(Kluwer Pub
Characterization and Comparison of 2 Distinct Epidemic Community-Associated Methicillin-Resistant Staphylococcus aureus Clones of ST59 Lineage.
Sequence type (ST) 59 is an epidemic lineage of community-associated (CA) methicillin-resistant Staphylococcus aureus (MRSA) isolates. Taiwanese CA-MRSA isolates belong to ST59 and can be grouped into 2 distinct clones, a virulent Taiwan clone and a commensal Asian-Pacific clone. The Taiwan clone carries the Panton-Valentine leukocidin (PVL) genes and the staphylococcal chromosomal cassette mec (SCCmec) VT, and is frequently isolated from patients with severe disease. The Asian-Pacific clone is PVL-negative, carries SCCmec IV, and a frequent colonizer of healthy children. Isolates of both clones were characterized by their ability to adhere to respiratory A549 cells, cytotoxicity to human neutrophils, and nasal colonization of a murine and murine sepsis models. Genome variation was determined by polymerase chain reaction of selected virulence factors and by multi-strain whole genome microarray. Additionally, the expression of selected factors was compared between the 2 clones. The Taiwan clone showed a much higher cytotoxicity to the human neutrophils and caused more severe septic infections with a high mortality rate in the murine model. The clones were indistinguishable in their adhesion to A549 cells and persistence of murine nasal colonization. The microarray data revealed that the Taiwan clone had lost the ø3-prophage that integrates into the β-hemolysin gene and includes staphylokinase- and enterotoxin P-encoding genes, but had retained the genes for human immune evasion, scn and chps. Production of the virulence factors did not differ significantly in the 2 clonal groups, although more α-toxin was expressed in Taiwan clone isolates from pneumonia patients. In conclusion, the Taiwan CA-MRSA clone was distinguished by enhanced virulence in both humans and an animal infection model. The evolutionary acquisition of PVL, the higher expression of α-toxin, and possibly the loss of a large portion of the β-hemolysin-converting prophage likely contribute to its higher pathogenic potential than the Asian-Pacific clone
Mechanical Stress Inference for Two Dimensional Cell Arrays
Many morphogenetic processes involve mechanical rearrangement of epithelial
tissues that is driven by precisely regulated cytoskeletal forces and cell
adhesion. The mechanical state of the cell and intercellular adhesion are not
only the targets of regulation, but are themselves likely signals that
coordinate developmental process. Yet, because it is difficult to directly
measure mechanical stress {\it in vivo} on sub-cellular scale, little is
understood about the role of mechanics of development. Here we present an
alternative approach which takes advantage of the recent progress in live
imaging of morphogenetic processes and uses computational analysis of high
resolution images of epithelial tissues to infer relative magnitude of forces
acting within and between cells. We model intracellular stress in terms of bulk
pressure and interfacial tension, allowing these parameters to vary from cell
to cell and from interface to interface. Assuming that epithelial cell layers
are close to mechanical equilibrium, we use the observed geometry of the two
dimensional cell array to infer interfacial tensions and intracellular
pressures. Here we present the mathematical formulation of the proposed
Mechanical Inverse method and apply it to the analysis of epithelial cell
layers observed at the onset of ventral furrow formation in the {\it
Drosophila} embryo and in the process of hair-cell determination in the avian
cochlea. The analysis reveals mechanical anisotropy in the former process and
mechanical heterogeneity, correlated with cell differentiation, in the latter
process. The method opens a way for quantitative and detailed experimental
tests of models of cell and tissue mechanics
Controlled release from zein matrices: Interplay of drug hydrophobicity and pH
Purpose: In earlier studies, the corn protein zein is found to be suitable as a sustained release agent, yet the range of drugs for which zein has been studied remains small. Here, zein is used as a sole excipient for drugs differing in hydrophobicity and isoelectric point: indomethacin, paracetamol and ranitidine. Methods: Caplets were prepared by hot-melt extrusion (HME) and injection moulding (IM). Each of the three model drugs were tested on two drug loadings in various dissolution media. The physical state of the drug, microstructure and hydration behaviour were investigated to build up understanding for the release behaviour from zein based matrix for drug delivery. Results: Drug crystallinity of the caplets increases with drug hydrophobicity. For ranitidine and indomethacin, swelling rates, swelling capacity and release rates were pH dependent as a consequence of the presence of charged groups on the drug molecules. Both hydration rates and release rates could be approached by existing models. Conclusion: Both the drug state as pH dependant electrostatic interactions are hypothesised to influence release kinetics. Both factors can potentially be used factors influencing release kinetics release, thereby broadening the horizon for zein as a tuneable release agent
Monopolin subunit Csm1 associates with MIND complex to establish monopolar attachment of sister kinetochores at meiosis I
Sexually reproducing organisms halve their cellular ploidy during gametogenesis by undergoing a specialized form of cell division known as meiosis. During meiosis, a single round of DNA replication is followed by two rounds of nuclear divisions (referred to as meiosis I and II). While sister kinetochores bind to microtubules emanating from opposite spindle poles during mitosis, they bind to microtubules originating from the same spindle pole during meiosis I. This phenomenon is referred to as mono-orientation and is essential for setting up the reductional mode of chromosome segregation during meiosis I. In budding yeast, mono-orientation depends on a four component protein complex referred to as monopolin which consists of two nucleolar proteins Csm1 and Lrs4, meiosis-specific protein Mam1 of unknown function and casein kinase Hrr25. Monopolin complex binds to kinetochores during meiosis I and prevents bipolar attachments. Although monopolin associates with kinetochores during meiosis I, its binding site(s) on the kinetochore is not known and its mechanism of action has not been established. By carrying out an imaging-based screen we have found that the MIND complex, a component of the central kinetochore, is required for monopolin association with kinetochores during meiosis. Furthermore, we demonstrate that interaction of monopolin subunit Csm1 with the N-terminal domain of MIND complex subunit Dsn1, is essential for both the association of monopolin with kinetochores and for monopolar attachment of sister kinetochores during meiosis I. As such this provides the first functional evidence for a monopolin-binding site at the kinetochore
Measurement of the Negative Muon Anomalous Magnetic Moment to 0.7 ppm
The anomalous magnetic moment of the negative muon has been measured to a
precision of 0.7 parts per million (ppm) at the Brookhaven Alternating Gradient
Synchrotron. This result is based on data collected in 2001, and is over an
order of magnitude more precise than the previous measurement of the negative
muon. The result a_mu= 11 659 214(8)(3) \times 10^{-10} (0.7 ppm), where the
first uncertainty is statistical and the second is sytematic, is consistend
with previous measurements of the anomaly for the positive and negative muon.
The average for the muon anomaly a_{mu}(exp) = 11 659 208(6) \times 10^{-10}
(0.5ppm).Comment: 4 pages, 4 figures, submitted to Physical Review Letters, revised to
reflect referee comments. Text further revised to reflect additional referee
comments and a corrected Fig. 3 replaces the older versio
Quercetin prevents progression of disease in elastase/LPS-exposed mice by negatively regulating MMP expression
Abstract Background Chronic obstructive pulmonary disease (COPD) is characterized by chronic bronchitis, emphysema and irreversible airflow limitation. These changes are thought to be due to oxidative stress and an imbalance of proteases and antiproteases. Quercetin, a plant flavonoid, is a potent antioxidant and anti-inflammatory agent. We hypothesized that quercetin reduces lung inflammation and improves lung function in elastase/lipopolysaccharide (LPS)-exposed mice which show typical features of COPD, including airways inflammation, goblet cell metaplasia, and emphysema. Methods Mice treated with elastase and LPS once a week for 4 weeks were subsequently administered 0.5 mg of quercetin dihydrate or 50% propylene glycol (vehicle) by gavage for 10 days. Lungs were examined for elastance, oxidative stress, inflammation, and matrix metalloproteinase (MMP) activity. Effects of quercetin on MMP transcription and activity were examined in LPS-exposed murine macrophages. Results Quercetin-treated, elastase/LPS-exposed mice showed improved elastic recoil and decreased alveolar chord length compared to vehicle-treated controls. Quercetin-treated mice showed decreased levels of thiobarbituric acid reactive substances, a measure of lipid peroxidation caused by oxidative stress. Quercetin also reduced lung inflammation, goblet cell metaplasia, and mRNA expression of pro-inflammatory cytokines and muc5AC. Quercetin treatment decreased the expression and activity of MMP9 and MMP12 in vivo and in vitro, while increasing expression of the histone deacetylase Sirt-1 and suppressing MMP promoter H4 acetylation. Finally, co-treatment with the Sirt-1 inhibitor sirtinol blocked the effects of quercetin on the lung phenotype. Conclusions Quercetin prevents progression of emphysema in elastase/LPS-treated mice by reducing oxidative stress, lung inflammation and expression of MMP9 and MMP12.http://deepblue.lib.umich.edu/bitstream/2027.42/78260/1/1465-9921-11-131.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78260/2/1465-9921-11-131.pdfPeer Reviewe
Recommended from our members
The combined diabetes and renal control trial (C-DIRECT) - a feasibility randomised controlled trial to evaluate outcomes in multi-morbid patients with diabetes and on dialysis using a mixed methods approach
Background: This cluster randomised controlled trial set out to investigate the feasibility and acceptability of the “Combined Diabetes and Renal Control Trial” (C-DIRECT) intervention, a nurse-led intervention based on motivational interviewing and self-management in patients with coexisting end stage renal diseases and diabetes mellitus (DM ESRD). Its efficacy to improve glycaemic control, as well as psychosocial and self-care outcomes were also evaluated as secondary outcomes.
Methods: An assessor-blinded, clustered randomised-controlled trial was conducted with 44 haemodialysis patients with DM ESRD and ≥ 8% glycated haemoglobin (HbA1c), in dialysis centres across Singapore. Patients were randomised according to dialysis shifts. 20 patients were assigned to intervention and 24 were in usual care. The C-DIRECT intervention consisted of three weekly chair-side sessions delivered by diabetes specialist nurses. Data on recruitment, randomisation, and retention, and secondary outcomes such as clinical endpoints, emotional distress, adherence, and self-management skills measures were obtained at baseline and at 12 weeks follow-up. A qualitative evaluation using interviews was conducted at the end of the trial.
Results: Of the 44 recruited at baseline, 42 patients were evaluated at follow-up. One patient died, and one discontinued the study due to deteriorating health. Recruitment, retention, and acceptability rates of C-DIRECT were generally satisfactory HbA1c levels decreased in both groups, but C-DIRECT had more participants with HbA1c < 8% at follow up compared to usual care. Significant improvements in role limitations due to physical health were noted for C-DIRECT whereas levels remained stable in usual care. No statistically significant differences between groups were observed for other clinical markers and other patient-reported outcomes. There were no adverse effects.
Conclusions: The trial demonstrated satisfactory feasibility. A brief intervention delivered on bedside as part of routine dialysis care showed some benefits in glycaemic control and on QOL domain compared with usual care, although no effect was observed in other secondary outcomes. Further research is needed to design and assess interventions to promote diabetes self-management in socially vulnerable patients
Strained graphene structures: from valleytronics to pressure sensing
Due to its strong bonds graphene can stretch up to 25% of its original size
without breaking. Furthermore, mechanical deformations lead to the generation
of pseudo-magnetic fields (PMF) that can exceed 300 T. The generated PMF has
opposite direction for electrons originating from different valleys. We show
that valley-polarized currents can be generated by local straining of
multi-terminal graphene devices. The pseudo-magnetic field created by a
Gaussian-like deformation allows electrons from only one valley to transmit and
a current of electrons from a single valley is generated at the opposite side
of the locally strained region. Furthermore, applying a pressure difference
between the two sides of a graphene membrane causes it to bend/bulge resulting
in a resistance change. We find that the resistance changes linearly with
pressure for bubbles of small radius while the response becomes non-linear for
bubbles that stretch almost to the edges of the sample. This is explained as
due to the strong interference of propagating electronic modes inside the
bubble. Our calculations show that high gauge factors can be obtained in this
way which makes graphene a good candidate for pressure sensing.Comment: to appear in proceedings of the NATO Advanced Research Worksho
Recommended from our members
The influence of the accessory genome on bacterial pathogen evolution
Bacterial pathogens exhibit significant variation in their genomic content of virulence factors. This reflects the abundance of strategies pathogens evolved to infect host organisms by suppressing host immunity. Molecular arms-races have been a strong driving force for the evolution of pathogenicity, with pathogens often encoding overlapping or redundant functions, such as type III protein secretion effectors and hosts encoding ever more sophisticated immune systems. The pathogens’ frequent exposure to other microbes, either in their host or in the environment, provides opportunities for the acquisition or interchange of mobile genetic elements. These DNA elements accessorise the core genome and can play major roles in shaping genome structure and altering the complement of virulence factors. Here, we review the different mobile genetic elements focusing on the more recent discoveries and highlighting their role in shaping bacterial pathogen evolution
- …
