1,815 research outputs found
Twinning superlattices in indium phosphide nanowires
Here, we show that we control the crystal structure of indium phosphide (InP)
nanowires by impurity dopants. We have found that zinc decreases the activation
barrier for 2D nucleation growth of zinc-blende InP and therefore promotes the
InP nanowires to crystallise in the zinc blende, instead of the commonly found
wurtzite crystal structure. More importantly, we demonstrate that we can, by
controlling the crystal structure, induce twinning superlattices with
long-range order in InP nanowires. We can tune the spacing of the superlattices
by the wire diameter and the zinc concentration and present a model based on
the cross-sectional shape of the zinc-blende InP nanowires to quantitatively
explain the formation of the periodic twinning.Comment: 18 pages, 4 figure
Acceleration-Induced Deconfinement Transitions in de Sitter Spacetime
In this note, we consider confining gauge theories in defined by
or compactification of higher-dimensional conformal field theories
with gravity duals. We investigate the behavior of these theories on de Sitter
spacetime as a function of the Hubble parameter. We find that in each case, the
de Sitter vacuum state of the field theory (defined by Euclidian continuation
from a sphere) undergoes a deconfinement transition as the Hubble parameter is
increased past a critical value. In each case, the corresponding critical de
Sitter temperature is smaller than the corresponding Minkowski-space
deconfinement temperature by a factor nearly equal to the dimension of the de
Sitter spacetime. The behavior is qualitatively and quantitatively similar to
that for confining theories defined by compactification of CFTs, studied
recently in arXiv:1007.3996.Comment: 25 pages, 7 figure
Naturalness and Fine Tuning in the NMSSM: Implications of Early LHC Results
We study the fine tuning in the parameter space of the semi-constrained
NMSSM, where most soft Susy breaking parameters are universal at the GUT scale.
We discuss the dependence of the fine tuning on the soft Susy breaking
parameters M_1/2 and m0, and on the Higgs masses in NMSSM specific scenarios
involving large singlet-doublet Higgs mixing or dominant Higgs-to-Higgs decays.
Whereas these latter scenarios allow a priori for considerably less fine tuning
than the constrained MSSM, the early LHC results rule out a large part of the
parameter space of the semi-constrained NMSSM corresponding to low values of
the fine tuning.Comment: 19 pages, 10 figures, bounds from Susy searches with ~1/fb include
Towards the Formalization of Fractional Calculus in Higher-Order Logic
Fractional calculus is a generalization of classical theories of integration
and differentiation to arbitrary order (i.e., real or complex numbers). In the
last two decades, this new mathematical modeling approach has been widely used
to analyze a wide class of physical systems in various fields of science and
engineering. In this paper, we describe an ongoing project which aims at
formalizing the basic theories of fractional calculus in the HOL Light theorem
prover. Mainly, we present the motivation and application of such formalization
efforts, a roadmap to achieve our goals, current status of the project and
future milestones.Comment: 9 page
Convergent development of low-relatedness supercolonies in Myrmica ants.
Many ant species have independently evolved colony structures with multiple queens and very low relatedness among nestmate workers, but it has remained unclear whether low-relatedness kin structures can repeatedly arise in populations of the same species. Here we report a study of Danish island populations of the red ant Myrmica sulcinodis and show that it is likely that such repeated developments occur. Two microsatellite loci were used to estimate genetic differentiation (F(ST)) among three populations and nestmate relatedness within these populations. The F(ST) values were highly significant due to very different allele frequencies among the three populations with relatively few common alleles and relatively many rare alleles, possibly caused by single queen foundation and rare subsequent immigration. Given the isolation of the islands and the low investment in reproduction, we infer that each of the populations was most likely established by a single queen, even though all three extant populations now have within-colony relatedness 95%), and the genetic differentiation of nests showed a significantly positive correlation with the distance between them. Both male-biased sex-ratio and genetic viscosity are expected characteristics of populations where queens have very local dispersal and where new colonies are initiated through nest-budding. Based on a comparison with other M. sulcinodis populations we hypothesise a distinct succession of population types and suggest that this may be a possible pathway to unicoloniality, ie, development towards a complete lack of colony kin structure and unrelated nestmate workers
Managing lifestyle change to reduce coronary risk: a synthesis of qualitative research on peoples’ experiences
Background
Coronary heart disease is an incurable condition. The only approach known to slow its progression is healthy lifestyle change and concordance with cardio-protective medicines. Few people fully succeed in these daily activities so potential health improvements are not fully realised. Little is known about peoples’ experiences of managing lifestyle change. The aim of this study was to synthesise qualitative research to explain how participants make lifestyle change after a cardiac event and explore this within the wider illness experience.
Methods
A qualitative synthesis was conducted drawing upon the principles of meta-ethnography. Qualitative studies were identified through a systematic search of 7 databases using explicit criteria. Key concepts were identified and translated across studies. Findings were discussed and diagrammed during a series of audiotaped meetings.
Results
The final synthesis is grounded in findings from 27 studies, with over 500 participants (56% male) across 8 countries. All participants experienced a change in their self-identity from what was ‘familiar’ to ‘unfamiliar’. The transition process involved ‘finding new limits and a life worth living’ , ‘finding support for self’ and ‘finding a new normal’. Analyses of these concepts led to the generation of a third order construct, namely an ongoing process of ‘reassessing past, present and future lives’ as participants considered their changed identity. Participants experienced a strong urge to get back to ‘normal’. Support from family and friends could enable or constrain life change and lifestyle changes. Lifestyle change was but one small part of a wider ‘life’ change that occurred.
Conclusions
The final synthesis presents an interpretation, not evident in the primary studies, of a person-centred model to explain how lifestyle change is situated within ‘wider’ life changes. The magnitude of individual responses to a changed health status varied. Participants experienced distress as their notion of self identity shifted and emotions that reflected the various stages of the grief process were evident in participants’ accounts. The process of self-managing lifestyle took place through experiential learning; the level of engagement with lifestyle change reflected an individual’s unique view of the balance needed to manage ‘realistic change’ whilst leading to a life that was perceived as ‘worth living’. Findings highlight the importance of providing person centred care that aligns with both psychological and physical dimensions of recovery which are inextricably linked
KRILLBASE: a circumpolar database of Antarctic krill and salp numerical densities, 1926–2016
Antarctic krill (Euphausia superba) and salps are major macroplankton contributors to Southern
Ocean food webs and krill are also fished commercially. Managing this fishery sustainably, against a backdrop of
rapid regional climate change, requires information on distribution and time trends. Many data on the abundance
of both taxa have been obtained from net sampling surveys since 1926, but much of this is stored in national
archives, sometimes only in notebooks. In order to make these important data accessible we have collated available
abundance data (numerical density, no.
Pathologies in Asymptotically Lifshitz Spacetimes
There has been significant interest in the last several years in studying
possible gravitational duals, known as Lifshitz spacetimes, to anisotropically
scaling field theories by adding matter to distort the asymptotics of an AdS
spacetime. We point out that putative ground state for the most heavily studied
example of such a spacetime, that with a flat spatial section, suffers from a
naked singularity and further point out this singularity is not resolvable by
any known stringy effect. We review the reasons one might worry that
asymptotically Lifshitz spacetimes are unstable and employ the initial data
problem to study the stability of such systems. Rather surprisingly this
question, and even the initial value problem itself, for these spacetimes turns
out to generically not be well-posed. A generic normalizable state will evolve
in such a way to violate Lifshitz asymptotics in finite time. Conversely,
enforcing the desired asymptotics at all times puts strong restrictions not
just on the metric and fields in the asymptotic region but in the deep interior
as well. Generically, even perturbations of the matter field of compact support
are not compatible with the desired asymptotics.Comment: 36 pages, 1 figure, v2: Enhanced discussion of singularity, including
relationship to Gubser's conjecture and singularity in RG flow solution, plus
minor clarification
Generic framework for meso-scale assessment of climate change hazards in coastal environments
Does zero temperature decide on the nature of the electroweak phase transition?
Taking on a new perspective of the electroweak phase transition, we investigate in detail the role played by the depth of the electroweak minimum (“vacuum energy difference”). We find a strong correlation between the vacuum energy difference and the strength of the phase transition. This correlation only breaks down if a negative eigen-value develops upon thermal corrections in the squared scalar mass matrix in the broken vacuum before the critical temperature. As a result the scalar fields slide across field space toward the symmetric vacuum, often causing a significantly weakened phase transition. Phenomenological constraints are found to strongly disfavour such sliding scalar scenarios. For several popular models, we suggest numerical bounds that guarantee a strong first order electroweak phase transition. The zero temperature phenomenology can then be studied in these parameter regions without the need for any finite temperature calculations. For almost all non-supersymmetric models with phenomenologically viable parameter points, we find a strong phase transition is guaranteed if the vacuum energy difference is greater than −8.8 × 107 GeV4. For the GNMSSM, we guarantee a strong phase transition for phenomenologically viable parameter points if the vacuum energy difference is greater than −6.9×107 GeV4. Alternatively, we capture more of the parameter space exhibiting a strong phase transition if we impose a simultaneous bound on the vacuum energy difference and the singlet mass
- …
