108 research outputs found
Heme activates TLR4-mediated inflammatory injury via MyD88/TRIF signaling pathway in intracerebral hemorrhage
<p>Abstract</p> <p>Background</p> <p>Inflammatory injury plays a critical role in intracerebral hemorrhage (ICH)-induced neurological deficits; however, the signaling pathways are not apparent by which the upstream cellular events trigger innate immune and inflammatory responses that contribute to neurological impairments. Toll-like receptor 4 (TLR4) plays a role in inflammatory damage caused by brain disorders.</p> <p>Methods</p> <p>In this study, we investigate the role of TLR4 signaling in ICH-induced inflammation. In the ICH model, a significant upregulation of TLR4 expression in reactive microglia has been demonstrated using real-time RT-PCR. Activation of microglia was detected by immunohistochemistry, cytokines were measured by ELISA, MyD88, TRIF and NF-κB were measured by Western blot and EMSA, animal behavior was evaluated by animal behavioristics.</p> <p>Results</p> <p>Compared to WT mice, TLR4<sup>−/− </sup>mice had restrained ICH-induced brain damage showing in reduced cerebral edema and lower neurological deficit scores. Quantification of cytokines including IL-6, TNF-α and IL-1β and assessment of macrophage infiltration in perihematoma tissues from TLR4<sup>−/−</sup>, MyD88<sup>−/− </sup>and TRIF<sup>−/− </sup>mice showed attenuated inflammatory damage after ICH. TLR4<sup>−/− </sup>mice also exhibited reduced MyD88 and TRIF expression which was accompanied by decreased NF-κB activity. This suggests that after ICH both MyD88 and TRIF pathways might be involved in TLR4-mediated inflammatory injury possibly via NF-κB activation. Exogenous hemin administration significantly increased TLR4 expression and microglial activation in cultures and also exacerbated brain injury in WT mice but not in TLR4<sup>−/− </sup>mice. Anti-TLR4 antibody administration suppressed hemin-induced microglial activation in cultures and in the mice model of ICH.</p> <p>Conclusions</p> <p>Our findings suggest that heme potentiates microglial activation <it>via </it>TLR4, in turn inducing NF-κB activation <it>via </it>the MyD88/TRIF signaling pathway, and ultimately increasing cytokine expression and inflammatory injury in ICH. Targeting TLR4 signaling may be a promising therapeutic strategy for ICH.</p
Anti-inflammatory activity of edible oyster mushroom is mediated through the inhibition of NF-κB and AP-1 signaling
<p>Abstract</p> <p>Background</p> <p>Mushrooms are well recognized for their culinary properties as well as for their potency to enhance immune response. In the present study, we evaluated anti-inflammatory properties of an edible oyster mushroom (<it>Pleurotus ostreatus</it>) <it>in vitro </it>and <it>in vivo</it>.</p> <p>Methods</p> <p>RAW264.7 murine macrophage cell line and murine splenocytes were incubated with the oyster mushroom concentrate (OMC, 0-100 μg/ml) in the absence or presence of lipopolysacharide (LPS) or concanavalin A (ConA), respectively. Cell proliferation was determined by MTT assay. Expression of cytokines and proteins was measured by ELISA assay and Western blot analysis, respectively. DNA-binding activity was assayed by the gel-shift analysis. Inflammation in mice was induced by intraperitoneal injection of LPS.</p> <p>Results</p> <p>OMC suppressed LPS-induced secretion of tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6), and IL-12p40 from RAW264.7 macrophages. OMC inhibited LPS-induced production of prostaglandin E2 (PGE<sub>2</sub>) and nitric oxide (NO) through the down-regulation of expression of COX-2 and iNOS, respectively. OMC also inhibited LPS-dependent DNA-binding activity of AP-1 and NF-κB in RAW264.7 cells. Oral administration of OMC markedly suppressed secretion of TNF-α and IL-6 in mice challenged with LPS <it>in vivo</it>. Anti-inflammatory activity of OMC was confirmed by the inhibition of proliferation and secretion of interferon-γ (IFN-γ), IL-2, and IL-6 from concanavalin A (ConA)-stimulated mouse splenocytes.</p> <p>Conclusions</p> <p>Our study suggests that oyster mushroom possesses anti-inflammatory activities and could be considered a dietary agent against inflammation. The health benefits of the oyster mushroom warrant further clinical studies.</p
Anti-α-Internexin Autoantibody from Neuropsychiatric Lupus Induce Cognitive Damage via Inhibiting Axonal Elongation and Promote Neuron Apoptosis
Neuropsychiatric systemic lupus erythematosus (NPSLE) is a major complication for lupus patients, which often leads to cognitive disturbances and memory loss and contributes to a significant patient morbidity and mortality. The presence of anti-neuronal autoantibodies (aAbs) has been identified; as examples, anti-NMDA receptors and anti-Ribsomal P aAbs have been linked to certain pathophysiological features of NPSLE.In the current study, we used a proteomic approach to identify an intermediate neurofilament alpha-internexin (INA) as a pathogenetically relevant autoantigen in NPSLE. The significance of this finding was then validated in an expanded of a cohort of NPSLE patients (n = 67) and controls (n = 270) by demonstrating that high titers of anti-INA aAb was found in both the serum and cerebrospinal fluid (CSF) of ∼50% NPSLE. Subsequently, a murine model was developed by INA immunization that resulted in pronounced cognitive dysfunction that mimicked features of NPSLE. Histopathology in affected animals displayed cortical and hippocampal neuron apoptosis. In vitro studies further demonstrated that anti-INA Ab mediated neuronal damage via inhibiting axonal elongation and eventually driving the cells to apoptosis.Taken together, this study identified a novel anti-neurofilament aAb in NPSLE, and established a hitherto undescribed mechanism of aAb-mediated neuron damage that could have relevance to the pathophysiology of NPSLE
Bacterial Communities in the Sediments of Dianchi Lake, a Partitioned Eutrophic Waterbody in China
Bacteria play an important role in the decomposition and cycling of a variety of compounds in freshwater aquatic environments, particularly nutrient-rich eutrophic lakes. A unique Chinese eutrophic lake - Dianchi - was selected for study because it has two separate and distinct basins, Caohai with higher organic carbon levels and Waihai with lower organic carbon levels. Sediment bacterial communities were studied in the two basins using samples collected in each season from June 2010 to March 2011. Barcoded pyrosequencing based on the 16 S rRNA gene found that certain common phyla, Proteobacteria, Bacteroidetes, Firmicutes and Chloroflexi, were dominant in the sediments from both basins. However, from the class to genus level, the dominant bacterial groups found in the sediments were distinct between the two basins. Correlation analysis revealed that, among the environmental parameters examined, total organic carbon (TOC) accounted for the greatest proportion of variability in bacterial community. Interestingly, study results suggest that increasing allochthonous organic carbon could enhance bacterial diversity and biomass in the sediment. In addition, analysis of function genes (amoA and nosZ) demonstrated that ammonia-oxidizing bacteria (AOB) were dominant in sediments, with 99% belonging to Nitrosomonas. Denitrifying bacteria were comparatively diverse and were associated with some cultivatable bacteria
The Epistatic Relationship between BRCA2 and the Other RAD51 Mediators in Homologous Recombination
RAD51 recombinase polymerizes at the site of double-strand breaks (DSBs) where it performs DSB repair. The loss of RAD51 causes extensive chromosomal breaks, leading to apoptosis. The polymerization of RAD51 is regulated by a number of RAD51 mediators, such as BRCA1, BRCA2, RAD52, SFR1, SWS1, and the five RAD51 paralogs, including XRCC3. We here show that brca2-null mutant cells were able to proliferate, indicating that RAD51 can perform DSB repair in the absence of BRCA2. We disrupted the BRCA1, RAD52, SFR1, SWS1, and XRCC3 genes in the brca2-null cells. All the resulting double-mutant cells displayed a phenotype that was very similar to that of the brca2-null cells. We suggest that BRCA2 might thus serve as a platform to recruit various RAD51 mediators at the appropriate position at the DNA–damage site
Reversal of Obesity and Insulin Resistance by a Non-Peptidic Glucagon-Like Peptide-1 Receptor Agonist in Diet-Induced Obese Mice
BACKGROUND: Glucagon-like peptide-1 (GLP-1) is recognized as an important regulator of glucose homeostasis. Efforts to utilize GLP-1 mimetics in the treatment of diabetes have yielded clinical benefits. A major hurdle for an effective oral therapy has been the difficulty of finding a non-peptidic GLP-1 receptor (GLP-1R) agonist. While its oral bioavailability still poses significant challenges, Boc5, one of the first such compounds, has demonstrated the attainment of GLP-1R agonism in diabetic mice. The present work was to investigate whether subchronic Boc5 treatment can restore glycemic control and induce sustainable weight loss in diet-induced obese (DIO) mice, an animal model of human obesity and insulin resistance. METHODOLOGY/PRINCIPAL FINDINGS: DIO mice were treated three times a week with Boc5 (0.3, 1 and 3 mg) for 12 weeks. Body weight, body mass index (BMI), food intake, fasting glucose, intraperitoneal glucose tolerance and insulin induced glucose clearance were monitored regularly throughout the treatment. Glucose-stimulated insulin secretion, β-cell mass, islet size, body composition, serum metabolic profiles, lipogenesis, lipolysis, adipose hypertrophy and lipid deposition in the liver and muscle were also measured after 12 weeks of dosing. Boc5 dose-dependently reduced body weight, BMI and food intake in DIO mice. These changes were associated with significant decreases in fat mass, adipocyte hypertrophy and peripheral tissue lipid accumulation. Boc5 treatment also restored glycemic control through marked improvement of insulin sensitivity and normalization of β-cell mass. Administration of Boc5 (3 mg) reduced basal but enhanced insulin-mediated glucose incorporation and noradrenaline-stimulated lipolysis in isolated adipocytes from obese mice. Furthermore, circulating leptin, adiponectin, triglyceride, total cholesterol, nonesterified fatty acid and high-density lipoprotein/low-density lipoprotein ratio were normalized to various extents by Boc5 treatment. CONCLUSIONS/SIGNIFICANCE: Boc5 may produce metabolic benefits via multiple synergistic mechanisms and may represent an attractive tool for therapeutic intervention of obesity and diabetes, by means of non-peptidic GLP-1R agonism
Evolution of body morphology and beak shape revealed by a morphometric analysis of 14 Paridae species
Physical perspective forward-inverse learning for ultrasonic sensing diagnosis in small diameter and thin-wall tube
Optimal tracking control with feedforward compensation for offshore steel jacket platforms with active mass damper mechanisms
This paper presents the optimal tracking control methodology for an offshore steel jacket platform subject to external wave force. Based on a dynamic model of an offshore steel jacket platform with an active mass damper mechanism and a linear exogenous system model of the external wave force on the offshore platform, an optimal tracking control scheme with feedforward compensation is proposed to attenuate the wave-induced vibration of the offshore platform. A feedforward and feedback optimal tracking controller (FFOTC) can be obtained by solving an algebraic Riccati equation and a Sylvester equation, respectively. It is demonstrated that the wave-induced vibration amplitudes of the offshore platform under the FFOTC are much smaller than the ones under the feedback optimal tracking controller (FOTC) and the feedforward and feedback optimal controller (FFOC). Furthermore, the required control force under the FFOTC is smaller than the ones under the FOTC and the FFOC. © The Author(s) 2014
- …
