922 research outputs found
Non-commutative residue of projections in Boutet de Monvel's calculus
Using results by Melo, Nest, Schick, and Schrohe on the K-theory of Boutet de
Monvel's calculus of boundary value problems, we show that the non-commutative
residue introduced by Fedosov, Golse, Leichtnam, and Schrohe vanishes on
projections in the calculus. This partially answers a question raised in a
recent collaboration with Grubb, namely whether the residue is zero on
sectorial projections for boundary value problems: This is confirmed to be true
when the sectorial projections is in the calculus.Comment: 10 page
Logarithms and sectorial projections for elliptic boundary problems
On a compact manifold with boundary, consider the realization B of an
elliptic, possibly pseudodifferential, boundary value problem having a spectral
cut (a ray free of eigenvalues), say R_-. In the first part of the paper we
define and discuss in detail the operator log B; its residue (generalizing the
Wodzicki residue) is essentially proportional to the zeta function value at
zero, zeta(B,0), and it enters in an important way in studies of composed zeta
functions zeta(A,B,s)=Tr(AB^{-s}) (pursued elsewhere).
There is a similar definition of the operator log_theta B, when the spectral
cut is at a general angle theta. When B has spectral cuts at two angles theta <
phi, one can define the sectorial projection Pi_{theta,phi}(B) whose range
contains the generalized eigenspaces for eigenvalues with argument in ] theta,
phi [; this is studied in the last part of the paper. The operator
Pi_{theta,phi}(B) is shown to be proportional to the difference between
log_theta B and log_phi B, having slightly better symbol properties than they
have. We show by examples that it belongs to the Boutet de Monvel calculus in
many special cases, but lies outside the calculus in general.Comment: 27 pages, minor adjustments and correction of typos. To appear in
Math. Scan
Structure- and laser-gauges for the semiconductor Bloch equations in high-harmonic generation in solids
The semiconductor Bloch equations (SBEs) are routinely used for simulations
of strong-field laser-matter interactions in condensed matter. In systems
without inversion or time-reversal symmetries, the Berry connections and
transition dipole phases (TDPs) must be included in the SBEs, which in turn
requires the construction of a smooth and periodic structure gauge for the
Bloch states. Here, we illustrate a general approach for such a structure-gauge
construction for topologically trivial systems. Furthermore, we investigate the
SBEs in the length and velocity gauges, and discuss their respective advantages
and shortcomings for the high-harmonic generation (HHG) process. We find that
in cases where we require dephasing or separation of the currents into
interband and intraband contributions, the length gauge SBEs are
computationally more efficient. In calculations without dephasing and where
only the total current is needed, the velocity gauge SBEs are structure-gauge
independent and are computationally more efficient. We employ two systems as
numerical examples to highlight our findings: an 1D model of ZnO and the 2D
monolayer hexagonal boron nitride (h-BN). The omittance of Berry connections or
TDPs in the SBEs for h-BN results in nonphysical HHG spectra. The structure-
and laser-gauge considerations in the current work are not restricted to the
HHG process, and are applicable to all strong-field matter simulations with
SBEs
Laser-induced bound-state phases in high-order harmonic generation
We present single-molecule and macroscopic calculations showing that
laser-induced Stark shifts contribute significantly to the phase of high-order
harmonics from polar molecules. This is important for orbital tomography, where
phases of field-free dipole matrix elements are needed in order to reconstruct
molecular orbitals. We derive an analytical expression that allows the
first-order Stark phase to be subtracted from experimental measurements
High harmonic generation from Bloch electrons in solids
We study the generation of high harmonic radiation by Bloch electrons in a
model transparent solid driven by a strong mid-infrared laser field. We solve
the single-electron time-dependent Schr\"odinger equation (TDSE) using a
velocity-gauge method [New J. Phys. 15, 013006 (2013)] that is numerically
stable as the laser intensity and number of energy bands are increased. The
resulting harmonic spectrum exhibits a primary plateau due to the coupling of
the valence band to the first conduction band, with a cutoff energy that scales
linearly with field strength and laser wavelength. We also find a weaker second
plateau due to coupling to higher-lying conduction bands, with a cutoff that is
also approximately linear in the field strength. To facilitate the analysis of
the time-frequency characteristics of the emitted harmonics, we also solve the
TDSE in a time-dependent basis set, the Houston states [Phys. Rev. B 33, 5494
(1986)], which allows us to separate inter-band and intra-band contributions to
the time-dependent current. We find that the inter-band and intra-band
contributions display very different time-frequency characteristics. We show
that solutions in these two bases are equivalent under an unitary
transformation but that, unlike the velocity gauge method, the Houston state
treatment is numerically unstable when more than a few low lying energy bands
are used
Spatial separation of large dynamical blue shift and harmonic generation
We study the temporal and spatial dynamics of the large amplitude and
frequency modulation that can be induced in an intense, few cycle laser pulse
as it propagates through a rapidly ionizing gas. Our calculations include both
single atom and macroscopic interactions between the non-linear medium and the
laser field. We analyze the harmonic generation by such pulses and show that it
is spatially separated from the ionization dynamics which produce a large
dynamical blue shift of the laser pulse. This means that small changes in the
initial laser focusing conditions can lead to large differences in the laser
frequency modulation, even though the generated harmonic spectrum remains
essentially unchanged.Comment: 4 pages, 5 figures. Under revisio
Spin-isospin nuclear response using the existing microscopic Skyrme functionals
Our paper aims at providing an answer to the question whether one can
reliably describe the properties of the most important spin-isospin nuclear
excitations, by using the available non-relativistic Skyrme energy functionals.
Our method, which has been introduced in a previous publication devoted to the
Isobaric Analog states, is the self-consistent Quasiparticle Random Phase
Approximation (QRPA). The inclusion of pairing is instrumental for describing a
number of experimentally measured spherical systems which are characterized by
open shells. We discuss the effect of isoscalar and isovector pairing
correlations. Based on the results for the Gamow-Teller resonance in Zr,
in Pb and in few Sn isotopes, we draw definite conclusions on the
performance of different Skyrme parametrizations, and we suggest improvements
for future fits. We also use the spin-dipole resonance as a benchmark of our
statements.Comment: Submitted to Phys. Rev.
Quantum interference in attosecond transient absorption of laser-dressed helium atoms
We calculate the transient absorption of an isolated attosecond pulse by
helium atoms subject to a delayed infrared (\ir) laser pulse. With the central
frequency of the broad attosecond spectrum near the ionization threshold, the
absorption spectrum is strongly modulated at the sub-\ir-cycle level. Given
that the absorption spectrum results from a time-integrated measurement, we
investigate the extent to which the delay-dependence of the absorption yields
information about the attosecond dynamics of the atom-field energy exchange. We
find two configurations in which this is possible. The first involves multi
photon transitions between bound states that result in interference between
different excitation pathways. The other involves the modification of the bound
state absorption lines by the IR field, which we find can result in a sub-cycle
time dependence only when ionization limits the duration of the strong field
interaction
Semi-Classical Wavefunction Perspective to High-Harmonic Generation
We introduce a semi-classical wavefunction (SCWF) model for strong-field
physics and attosecond science. When applied to high harmonic generation (HHG),
this formalism allows one to show that the natural time-domain separation of
the contribution of ionization, propagation and recollisions to the HHG process
leads to a frequency-domain factorization of the harmonic yield into these same
contributions, for any choice of atomic or molecular potential. We first derive
the factorization from the natural expression of the dipole signal in the
temporal domain by using a reference system, as in the quantitative
rescattering (QRS) formalism [J. Phys. B. 43, 122001 (2010)]. Alternatively, we
show how the trajectory component of the SCWF can be used to express the
factorization, which also allows one to attribute individual contributions to
the spectrum to the underlying trajectories
- …
