922 research outputs found

    Non-commutative residue of projections in Boutet de Monvel's calculus

    Full text link
    Using results by Melo, Nest, Schick, and Schrohe on the K-theory of Boutet de Monvel's calculus of boundary value problems, we show that the non-commutative residue introduced by Fedosov, Golse, Leichtnam, and Schrohe vanishes on projections in the calculus. This partially answers a question raised in a recent collaboration with Grubb, namely whether the residue is zero on sectorial projections for boundary value problems: This is confirmed to be true when the sectorial projections is in the calculus.Comment: 10 page

    Logarithms and sectorial projections for elliptic boundary problems

    Full text link
    On a compact manifold with boundary, consider the realization B of an elliptic, possibly pseudodifferential, boundary value problem having a spectral cut (a ray free of eigenvalues), say R_-. In the first part of the paper we define and discuss in detail the operator log B; its residue (generalizing the Wodzicki residue) is essentially proportional to the zeta function value at zero, zeta(B,0), and it enters in an important way in studies of composed zeta functions zeta(A,B,s)=Tr(AB^{-s}) (pursued elsewhere). There is a similar definition of the operator log_theta B, when the spectral cut is at a general angle theta. When B has spectral cuts at two angles theta < phi, one can define the sectorial projection Pi_{theta,phi}(B) whose range contains the generalized eigenspaces for eigenvalues with argument in ] theta, phi [; this is studied in the last part of the paper. The operator Pi_{theta,phi}(B) is shown to be proportional to the difference between log_theta B and log_phi B, having slightly better symbol properties than they have. We show by examples that it belongs to the Boutet de Monvel calculus in many special cases, but lies outside the calculus in general.Comment: 27 pages, minor adjustments and correction of typos. To appear in Math. Scan

    Structure- and laser-gauges for the semiconductor Bloch equations in high-harmonic generation in solids

    Get PDF
    The semiconductor Bloch equations (SBEs) are routinely used for simulations of strong-field laser-matter interactions in condensed matter. In systems without inversion or time-reversal symmetries, the Berry connections and transition dipole phases (TDPs) must be included in the SBEs, which in turn requires the construction of a smooth and periodic structure gauge for the Bloch states. Here, we illustrate a general approach for such a structure-gauge construction for topologically trivial systems. Furthermore, we investigate the SBEs in the length and velocity gauges, and discuss their respective advantages and shortcomings for the high-harmonic generation (HHG) process. We find that in cases where we require dephasing or separation of the currents into interband and intraband contributions, the length gauge SBEs are computationally more efficient. In calculations without dephasing and where only the total current is needed, the velocity gauge SBEs are structure-gauge independent and are computationally more efficient. We employ two systems as numerical examples to highlight our findings: an 1D model of ZnO and the 2D monolayer hexagonal boron nitride (h-BN). The omittance of Berry connections or TDPs in the SBEs for h-BN results in nonphysical HHG spectra. The structure- and laser-gauge considerations in the current work are not restricted to the HHG process, and are applicable to all strong-field matter simulations with SBEs

    Laser-induced bound-state phases in high-order harmonic generation

    Full text link
    We present single-molecule and macroscopic calculations showing that laser-induced Stark shifts contribute significantly to the phase of high-order harmonics from polar molecules. This is important for orbital tomography, where phases of field-free dipole matrix elements are needed in order to reconstruct molecular orbitals. We derive an analytical expression that allows the first-order Stark phase to be subtracted from experimental measurements

    High harmonic generation from Bloch electrons in solids

    Full text link
    We study the generation of high harmonic radiation by Bloch electrons in a model transparent solid driven by a strong mid-infrared laser field. We solve the single-electron time-dependent Schr\"odinger equation (TDSE) using a velocity-gauge method [New J. Phys. 15, 013006 (2013)] that is numerically stable as the laser intensity and number of energy bands are increased. The resulting harmonic spectrum exhibits a primary plateau due to the coupling of the valence band to the first conduction band, with a cutoff energy that scales linearly with field strength and laser wavelength. We also find a weaker second plateau due to coupling to higher-lying conduction bands, with a cutoff that is also approximately linear in the field strength. To facilitate the analysis of the time-frequency characteristics of the emitted harmonics, we also solve the TDSE in a time-dependent basis set, the Houston states [Phys. Rev. B 33, 5494 (1986)], which allows us to separate inter-band and intra-band contributions to the time-dependent current. We find that the inter-band and intra-band contributions display very different time-frequency characteristics. We show that solutions in these two bases are equivalent under an unitary transformation but that, unlike the velocity gauge method, the Houston state treatment is numerically unstable when more than a few low lying energy bands are used

    Spatial separation of large dynamical blue shift and harmonic generation

    Get PDF
    We study the temporal and spatial dynamics of the large amplitude and frequency modulation that can be induced in an intense, few cycle laser pulse as it propagates through a rapidly ionizing gas. Our calculations include both single atom and macroscopic interactions between the non-linear medium and the laser field. We analyze the harmonic generation by such pulses and show that it is spatially separated from the ionization dynamics which produce a large dynamical blue shift of the laser pulse. This means that small changes in the initial laser focusing conditions can lead to large differences in the laser frequency modulation, even though the generated harmonic spectrum remains essentially unchanged.Comment: 4 pages, 5 figures. Under revisio

    Spin-isospin nuclear response using the existing microscopic Skyrme functionals

    Full text link
    Our paper aims at providing an answer to the question whether one can reliably describe the properties of the most important spin-isospin nuclear excitations, by using the available non-relativistic Skyrme energy functionals. Our method, which has been introduced in a previous publication devoted to the Isobaric Analog states, is the self-consistent Quasiparticle Random Phase Approximation (QRPA). The inclusion of pairing is instrumental for describing a number of experimentally measured spherical systems which are characterized by open shells. We discuss the effect of isoscalar and isovector pairing correlations. Based on the results for the Gamow-Teller resonance in 90^{90}Zr, in 208^{208}Pb and in few Sn isotopes, we draw definite conclusions on the performance of different Skyrme parametrizations, and we suggest improvements for future fits. We also use the spin-dipole resonance as a benchmark of our statements.Comment: Submitted to Phys. Rev.

    Quantum interference in attosecond transient absorption of laser-dressed helium atoms

    Full text link
    We calculate the transient absorption of an isolated attosecond pulse by helium atoms subject to a delayed infrared (\ir) laser pulse. With the central frequency of the broad attosecond spectrum near the ionization threshold, the absorption spectrum is strongly modulated at the sub-\ir-cycle level. Given that the absorption spectrum results from a time-integrated measurement, we investigate the extent to which the delay-dependence of the absorption yields information about the attosecond dynamics of the atom-field energy exchange. We find two configurations in which this is possible. The first involves multi photon transitions between bound states that result in interference between different excitation pathways. The other involves the modification of the bound state absorption lines by the IR field, which we find can result in a sub-cycle time dependence only when ionization limits the duration of the strong field interaction

    Semi-Classical Wavefunction Perspective to High-Harmonic Generation

    Get PDF
    We introduce a semi-classical wavefunction (SCWF) model for strong-field physics and attosecond science. When applied to high harmonic generation (HHG), this formalism allows one to show that the natural time-domain separation of the contribution of ionization, propagation and recollisions to the HHG process leads to a frequency-domain factorization of the harmonic yield into these same contributions, for any choice of atomic or molecular potential. We first derive the factorization from the natural expression of the dipole signal in the temporal domain by using a reference system, as in the quantitative rescattering (QRS) formalism [J. Phys. B. 43, 122001 (2010)]. Alternatively, we show how the trajectory component of the SCWF can be used to express the factorization, which also allows one to attribute individual contributions to the spectrum to the underlying trajectories
    corecore