102 research outputs found

    The GENIE Neutrino Monte Carlo Generator: Physics and User Manual

    Get PDF
    GENIE is a suite of products for the experimental neutrino physics community. This suite includes i) a modern software framework for implementing neutrino event generators, a state-of-the-art comprehensive physics model and tools to support neutrino interaction simulation for realistic experimental setups (the Generator product), ii) extensive archives of neutrino, charged-lepton and hadron scattering data and software to produce a comprehensive set of data/MC comparisons (the Comparisons product), and iii) a generator tuning framework and fitting applications (the Tuning product). This book provides the definite guide for the GENIE Generator: It presents the software architecture and a detailed description of its physics model and official tunes. In addition, it provides a rich set of data/MC comparisons that characterise the physics performance of GENIE. Detailed step-by-step instructions on how to install and configure the Generator, run its applications and analyze its outputs are also included

    Graph Neural Networks for Particle Reconstruction in High Energy Physics detectors

    Full text link
    Pattern recognition problems in high energy physics are notably different from traditional machine learning applications in computer vision. Reconstruction algorithms identify and measure the kinematic properties of particles produced in high energy collisions and recorded with complex detector systems. Two critical applications are the reconstruction of charged particle trajectories in tracking detectors and the reconstruction of particle showers in calorimeters. These two problems have unique challenges and characteristics, but both have high dimensionality, high degree of sparsity, and complex geometric layouts. Graph Neural Networks (GNNs) are a relatively new class of deep learning architectures which can deal with such data effectively, allowing scientists to incorporate domain knowledge in a graph structure and learn powerful representations leveraging that structure to identify patterns of interest. In this work we demonstrate the applicability of GNNs to these two diverse particle reconstruction problems.Comment: Presented at NeurIPS 2019 Workshop "Machine Learning and the Physical Sciences

    Graph Neural Networks for Particle Reconstruction in High Energy Physics detectors

    Get PDF
    Pattern recognition problems in high energy physics are notably different from traditional machine learning applications in computer vision. Reconstruction algorithms identify and measure the kinematic properties of particles produced in high energy collisions and recorded with complex detector systems. Two critical applications are the reconstruction of charged particle trajectories in tracking detectors and the reconstruction of particle showers in calorimeters. These two problems have unique challenges and characteristics, but both have high dimensionality, high degree of sparsity, and complex geometric layouts. Graph Neural Networks (GNNs) are a relatively new class of deep learning architectures which can deal with such data effectively, allowing scientists to incorporate domain knowledge in a graph structure and learn powerful representations leveraging that structure to identify patterns of interest. In this work we demonstrate the applicability of GNNs to these two diverse particle reconstruction problems

    Quantum circuit fidelity estimation using machine learning

    Full text link
    The computational power of real-world quantum computers is limited by errors. When using quantum computers to perform algorithms which cannot be efficiently simulated classically, it is important to quantify the accuracy with which the computation has been performed. In this work we introduce a machine-learning-based technique to estimate the fidelity between the state produced by a noisy quantum circuit and the target state corresponding to ideal noise-free computation. Our machine learning model is trained in a supervised manner, using smaller or simpler circuits for which the fidelity can be estimated using other techniques like direct fidelity estimation and quantum state tomography. We demonstrate that, for simulated random quantum circuits with a realistic noise model, the trained model can predict the fidelities of more complicated circuits for which such methods are infeasible. In particular, we show the trained model may make predictions for circuits with higher degrees of entanglement than were available in the training set, and that the model may make predictions for non-Clifford circuits even when the training set included only Clifford-reducible circuits. This empirical demonstration suggests classical machine learning may be useful for making predictions about beyond-classical quantum circuits for some non-trivial problems.Comment: 27 pages, 6 figure
    corecore