16 research outputs found

    Linking thermal and seismic mantle structure in the light of uncertain mineralogy and limited tomographic resolution

    No full text
    &amp;lt;p&amp;gt;Mantle convection is primarily driven by gravitational forces acting on thermally buoyant structures in Earth&amp;#039;s interior. The associated vertical stresses generate phases of uplift and subsidence of the surface, leaving observable traces in the geologic record. Utilizing new data assimilation techniques, geodynamic inverse models of mantle flow can provide theoretical estimates of these surface processes, which can be tested against geologic observations. These so-called mantle flow retrodictions are emerging as powerful tools that have the potential to allow for tighter constraints on the inherent physical parameters.&amp;lt;/p&amp;gt; &amp;lt;p&amp;gt;To contain meaningful information, the inverse models require an estimate of the present-day buoyancy distribution within the mantle, which can be derived from seismic observations. By using thermodynamically self-consistent models of mantle mineralogy, it is possible to convert the seismic structure of global tomographic models to temperature. However, both seismic and mineralogical models are significantly affected by different sources of uncertainty and often require subjective modelling choices, which can lead to different estimated properties. In addition, due to the complexity of the mineralogical models, the relation between temperature and seismic velocities is highly nonlinear and not strictly bijective: In the presence of phase transitions, different temperatures can result in the same seismic velocity, further complicating the conversion between the two parameters.&amp;lt;/p&amp;gt; &amp;lt;p&amp;gt;&amp;amp;#160;&amp;lt;/p&amp;gt; &amp;lt;p&amp;gt;Using a synthetic closed-loop experiment, we investigate the theoretical ability to estimate the present-day thermal state of Earth&amp;#039;s mantle based on tomographic models. The temperature distribution from a 3-D mantle circulation model with earth-like convective vigour serves as a representation of the &amp;quot;true&amp;quot; temperature field, which we aim to recover after a set of processing steps. These steps include the &amp;amp;#8220;forward and inverse&amp;amp;#8221; mineralogical mapping between temperatures and seismic velocities, using a thermodynamic model for pyrolite composition, as well as applying a tomographic filter to mimic the limited resolution and uneven data coverage of the underlying tomographic model. Owing to imperfect knowledge of the parameters governing mineral anelasticity, we test the effects of changes to the anelastic correction applied in forward and inverse mineralogical mapping. The mismatch between the recovered and the initial temperature field carries a strong imprint of the tomographic filter. Additionally, we observe systematic errors in the recovered temperature field in the vicinity of phase transitions. Our results highlight that, given the current limits of tomographic models and the incomplete knowledge of mantle mineralogy, amplitudes and spatial scales of a temperature field obtained through global seismic models will deviate significantly from the true state. Strategies to recover the present-day buoyancy field must be carefully selected in order to minimize additional uncertainties.&amp;lt;/p&amp;gt;</jats:p

    The capability of endophytic fungi for production of hemicellulases and related enzymes

    Get PDF
    Abstract\ud \ud BACKGROUND: \ud \ud There is an imperative necessity for alternative sources of energy able to reduce the world dependence of fossil oil. One of the most successful options is ethanol obtained mainly from sugarcane and corn fermentation. The foremost residue from sugarcane industry is the bagasse, a rich lignocellulosic raw material uses for the production of ethanol second generation (2G). New cellulolytic and hemicellulytic enzymes are needed, in order to optimize the degradation of bagasse and production of ethanol 2G.\ud \ud RESULTS: \ud \ud The ability to produce hemicellulases and related enzymes, suitable for lignocellulosic biomass deconstruction, was explored using 110 endophytic fungi and 9 fungi isolated from spoiled books in Brazil. Two initial selections were performed, one employing the esculin gel diffusion assay, and the other by culturing on agar plate media with beechwood xylan and liquor from the hydrothermal pretreatment of sugar cane bagasse. A total of 56 isolates were then grown at 29°C on steam-exploded delignified sugar cane bagasse (DEB) plus soybean bran (SB) (3:1), with measurement of the xylanase, pectinase, β-glucosidase, CMCase, and FPase activities. Twelve strains were selected, and their enzyme extracts were assessed using different substrates. Finally, the best six strains were grown under xylan and pectin, and several glycohydrolases activities were also assessed. These strains were identified morphologically and by sequencing the internal transcribed spacer (ITS) regions and the partial β-tubulin gene (BT2). The best six strains were identified as Aspergillus niger DR02, Trichoderma atroviride DR17 and DR19, Alternaria sp. DR45, Annulohypoxylon stigyum DR47 and Talaromyces wortmannii DR49. These strains produced glycohydrolases with different profiles, and production was highly influenced by the carbon sources in the media.\ud \ud CONCLUSIONS: \ud \ud The selected endophytic fungi Aspergillus niger DR02, Trichoderma atroviride DR17 and DR19, Alternaria sp. DR45, Annulohypoxylon stigyum DR47 and Talaromyces wortmannii DR49 are excellent producers of hydrolytic enzymes to be used as part of blends to decompose sugarcane biomass at industrial level.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)National Laboratory of Science and Technology of Bioethanol (CTBE

    The capability of endophytic fungi for production of hemicellulases and related enzymes

    No full text
    Abstract Background There is an imperative necessity for alternative sources of energy able to reduce the world dependence of fossil oil. One of the most successful options is ethanol obtained mainly from sugarcane and corn fermentation. The foremost residue from sugarcane industry is the bagasse, a rich lignocellulosic raw material uses for the production of ethanol second generation (2G). New cellulolytic and hemicellulytic enzymes are needed, in order to optimize the degradation of bagasse and production of ethanol 2G. Results The ability to produce hemicellulases and related enzymes, suitable for lignocellulosic biomass deconstruction, was explored using 110 endophytic fungi and 9 fungi isolated from spoiled books in Brazil. Two initial selections were performed, one employing the esculin gel diffusion assay, and the other by culturing on agar plate media with beechwood xylan and liquor from the hydrothermal pretreatment of sugar cane bagasse. A total of 56 isolates were then grown at 29°C on steam-exploded delignified sugar cane bagasse (DEB) plus soybean bran (SB) (3:1), with measurement of the xylanase, pectinase, β-glucosidase, CMCase, and FPase activities. Twelve strains were selected, and their enzyme extracts were assessed using different substrates. Finally, the best six strains were grown under xylan and pectin, and several glycohydrolases activities were also assessed. These strains were identified morphologically and by sequencing the internal transcribed spacer (ITS) regions and the partial β-tubulin gene (BT2). The best six strains were identified as Aspergillus niger DR02, Trichoderma atroviride DR17 and DR19, Alternaria sp. DR45, Annulohypoxylon stigyum DR47 and Talaromyces wortmannii DR49. These strains produced glycohydrolases with different profiles, and production was highly influenced by the carbon sources in the media. Conclusions The selected endophytic fungi Aspergillus niger DR02, Trichoderma atroviride DR17 and DR19, Alternaria sp. DR45, Annulohypoxylon stigyum DR47 and Talaromyces wortmannii DR49 are excellent producers of hydrolytic enzymes to be used as part of blends to decompose sugarcane biomass at industrial level

    Antimicrobial Spectrum of Activity and Mechanism of Action of Linear Alpha-Helical Peptides Inspired by Shrimp Anti-Lipopolysaccharide Factors

    No full text
    Shrimp antilipopolysaccharide factors (ALFs) form a multifunctional and diverse family of antimicrobial host defense peptides (AMPs) composed of seven members (groups A to G), which differ in terms of their primary structure and biochemical properties. They are amphipathic peptides with two conserved cysteine residues stabilizing a central β-hairpin that is understood to be the core region for their biological activities. In this study, we synthetized three linear (cysteine-free) peptides based on the amino acid sequence of the central β-hairpin of the newly identified shrimp (Litopenaeus vannamei) ALFs from groups E to G. Unlike whole mature ALFs, the ALF-derived peptides exhibited an α-helix secondary structure. In vitro assays revealed that the synthetic peptides display a broad spectrum of activity against both Gram-positive and Gram-negative bacteria and fungi but not against the protozoan parasites Trypanosoma cruzi and Leishmania (L.) infantum. Remarkably, they displayed synergistic effects and showed the ability to permeabilize bacterial membranes, a mechanism of action of classical AMPs. Having shown low cytotoxicity to THP-1 human cells and being active against clinical multiresistant bacterial isolates, these nature-inspired peptides represent an interesting class of bioactive molecules with biotechnological potential for the development of novel therapeutics in medical sciences.</jats:p
    corecore