50 research outputs found
Purified Bighead protein efficiently promotes head development in the South African clawed frog, Xenopus laevis
Vertebrate embryonic development is regulated by a few families of extracellular signaling molecules. Xenopus laevis embryos offer an excellent system to study the cell-cell communication signals that govern embryonic patterning. In the frog embryos, Wnt/β-catenin plays a pivotal role in regulating embryonic axis development, and modulation of the Wnt pathway is required for proper antero-posterior patterning. Recently, a novel secreted, organizer-specific Wnt inhibitor, Bighead, was identified that acts by downregulating Lrp6 plasma membrane levels. Here, I describe a method to purify biologically active Bighead protein and confirm that Bighead promotes Xenopus head development
Degeneration and Regeneration in the Vertebrate Retina
International audienceThe human retina is a complex, layered tissue responsible for the perception of the visual stimuli coming from the external environment. Since the visual inputs account for about 30% of our sensory stimulations, it is not surprising that partial or complete blindness results in a strong decrease of life quality. Several diseases affect the retina, often leading to degeneration of one or several cell types. The damage induced by these diseases is often irreversible, thus leading to a permanent loss of the visual ability. Over the last decades significant progress has been made to elucidate the molecular basis of retinal degenerative diseases. This knowledge is necessary in order to design valid approaches for the treatment of retinopathies
Recommended from our members
Dact-4 is a Xenopus laevis Spemann organizer gene related to the Dapper/Frodo antagonist of β-catenin family of proteins
Dact/Dapper/Frodo members belong to an evolutionarily conserved family of Dishevelled-binding proteins present in mammals, birds, amphibians and fishes that are involved in the regulation of Wnt and TGF-β signaling. In addition to the three established genes (Dact1-3) that compose the Dact family, a fourth paralogue group of related proteins has been recently identified and named Dact-4. Interestingly, Dact-4 is the most rapidly evolving gene of the entire family, as it displays very low homology with other Dact proteins and has lost key conserved domains. Dact-4 is not present in mammals, but weakly conserved homologs were found in reptiles and fishes. Recent RNAseq from our group identified new genes specifically expressed in the Xenopus laevis Spemann organizer. Among these, LOC100170590 mRNA encoded a protein sharing weak homology with a coelacanth Dact-like protein member. Here, by analyzing protein phylogeny and synteny, we show that this organizer gene corresponds to Dact-4. We report that Dact-4 is expressed in the Xenopus blastula pre-organizer region in addition to the gastrula organizer, as well as in placodes, eyes, neural tube, presomitic mesoderm and pronephros. Dact-4-Flag microinjection experiments suggest it is a nucleocytoplasmic protein, as are the other Dact paralogues
Recommended from our members
GSK3 Inhibits Macropinocytosis and Lysosomal Activity through the Wnt Destruction Complex Machinery
Summary: Canonical Wnt signaling is emerging as a major regulator of endocytosis. Here, we report that Wnt-induced macropinocytosis is regulated through glycogen synthase kinase 3 (GSK3) and the β-catenin destruction complex. We find that mutation of Axin1, a tumor suppressor and component of the destruction complex, results in the activation of macropinocytosis. Surprisingly, inhibition of GSK3 by lithium chloride (LiCl), CHIR99021, or dominant-negative GSK3 triggers macropinocytosis. GSK3 inhibition causes a rapid increase in acidic endolysosomes that is independent of new protein synthesis. GSK3 inhibition or Axin1 mutation increases lysosomal activity, which can be followed with tracers of active cathepsin D, β-glucosidase, and ovalbumin degradation. Microinjection of LiCl into the blastula cavity of Xenopus embryos causes a striking increase in dextran macropinocytosis. The effects of GSK3 inhibition on protein degradation in endolysosomes are blocked by the macropinocytosis inhibitors EIPA or IPA-3, suggesting that increases in membrane trafficking drive lysosomal activity
Intestinal Paneth cell differentiation relies on asymmetric regulation of Wnt signaling by Daam1/2
The mammalian intestine is one of the most rapidly self-renewing tissues, driven by stem cells residing at the crypt bottom. Paneth cells form a major element of the niche microenvironment providing various growth factors to orchestrate intestinal stem cell homeostasis, such as Wnt3. Different Wnt ligands can selectively activate β-catenin-dependent (canonical) or -independent (noncanonical) signaling. Here, we report that the Dishevelled-associated activator of morphogenesis 1 (Daam1) and its paralogue Daam2 asymmetrically regulate canonical and noncanonical Wnt (Wnt/PCP) signaling. Daam1/2 interacts with the Wnt inhibitor RNF43, and Daam1/2 double knockout stimulates canonical Wnt signaling by preventing RNF43-dependent degradation of the Wnt receptor, Frizzled (Fzd). Single-cell RNA sequencing analysis revealed that Paneth cell differentiation is impaired by Daam1/2 depletion because of defective Wnt/PCP signaling. Together, we identified Daam1/2 as an unexpected hub molecule coordinating both canonical and noncanonical Wnt, which is fundamental for specifying an adequate number of Paneth cells
Intestinal Paneth cell differentiation relies on asymmetric regulation of Wnt signaling by Daam1/2
The mammalian intestine is one of the most rapidly self-renewing tissues, driven by stem cells residing at the crypt bottom. Paneth cells form a major element of the niche microenvironment providing various growth factors to orchestrate intestinal stem cell homeostasis, such as Wnt3. Different Wnt ligands can selectively activate β-catenin-dependent (canonical) or -independent (noncanonical) signaling. Here, we report that the Dishevelled-associated activator of morphogenesis 1 (Daam1) and its paralogue Daam2 asymmetrically regulate canonical and noncanonical Wnt (Wnt/PCP) signaling. Daam1/2 interacts with the Wnt inhibitor RNF43, and Daam1/2 double knockout stimulates canonical Wnt signaling by preventing RNF43-dependent degradation of the Wnt receptor, Frizzled (Fzd). Single-cell RNA sequencing analysis revealed that Paneth cell differentiation is impaired by Daam1/2 depletion because of defective Wnt/PCP signaling. Together, we identified Daam1/2 as an unexpected hub molecule coordinating both canonical and noncanonical Wnt, which is fundamental for specifying an adequate number of Paneth cells
Wnt-inducible Lrp6-APEX2 interacting proteins identify ESCRT machinery and Trk-fused gene as components of the Wnt signaling pathway.
Maternal syntabulin is required for dorsal axis formation and is a germ plasm component in Xenopus.
RNF43 and ZNRF3 in Wnt Signaling-A Master Regulator at the Membrane
The Wnt & beta;-catenin signaling pathway is a highly conserved mechanism that plays a critical role from embryonic development and adult stem cell homeostasis. However, dysregulation of the Wnt pathway has been implicated in various diseases, including cancer. Therefore, multiple layers of regulatory mechanisms tightly control the activation and suppression of the Wnt signal. The E3 ubiquitin ligases RNF43 and ZNRF3, which are known negative regulators of the Wnt pathway, are critical component of Wnt signaling regulation. These E3 ubiquitin ligases control Wnt signaling by targeting the Wnt receptor Frizzled to induce ubiquitination-mediated endo-lysosomal degradation, thus controlling the activation of the Wnt signaling pathway. We also discuss the regulatory mechanisms, interactors, and evolution of RNF43 and ZNRF3. This review article summarizes recent findings on RNF43 and ZNRF3 and their potential implications for the development of therapeutic strategies to target the Wnt signaling pathway in various diseases, including cancer.11Nsciescopu
