2,805 research outputs found

    Nuclear Astrophysics with Radioactive Beams

    Full text link
    The quest to comprehend how nuclear processes influence astrophysical phenomena is driving experimental and theoretical research programs worldwide. One of the main goals in nuclear astrophysics is to understand how energy is generated in stars, how elements are synthesized in stellar events and what the nature of neutron stars is. New experimental capabilities, the availability of radioactive beams and increased computational power paired with new astronomical observations have advanced the present knowledge. This review summarizes the progress in the field of nuclear astrophysics with a focus on the role of indirect methods and reactions involving beams of rare isotopes.Comment: 121 pages, 27 figures, 510 references, to appear in Physics Reports. Minor typos and references fixe

    Systematics of intermediate-energy single-nucleon removal cross sections

    Get PDF
    There is now a large and increasing body of experimental data and theoretical analyses for reactions that remove a single nucleon from an intermediate-energy beam of neutron- or proton-rich nuclei. In each such measurement, one obtains the inclusive cross section for the population of all bound final states of the mass A-1 reaction residue. These data, from different regions of the nuclear chart, and that involve weakly- and strongly-bound nucleons, are compared with theoretical expectations. These calculations include an approximate treatment of the reaction dynamics and shell-model descriptions of the projectile initial state, the bound final states of the residues, and the single-particle strengths computed from their overlap functions. The results are discussed in the light of recent data, more exclusive tests of the eikonal dynamical description, and calculations that take input from more microscopic nuclear structure models.Comment: 4 pages, 1 figure, with reference correcte

    The chiral symplectic universality class

    Full text link
    We report a numerical investigation of localization in the SU(2) model without diagonal disorder. At the band center, chiral symmetry plays an important role. Our results indicate that states at the band center are critical. States away from the band center but not too close to the edge of the spectrum are metallic as expected for Hamiltonians with symplectic symmetry.Comment: accepted in Proceedings of Localisation 2002 Conference, Tokyo, Japan (to be published as supplement of J. Phys. Soc. Japan

    Quenching of spectroscopic factors for proton removal in oxygen isotopes

    Full text link
    We present microscopic coupled-cluster calculations of the spectroscopic factors for proton removal from the closed-shell oxygen isotopes 14,16,22,24,28^{14,16,22,24,28}O with the chiral nucleon-nucleon interaction at next-to-next-to-next-to-leading order. We include coupling-to-continuum degrees of freedom by using a Hartree-Fock basis built from a Woods-Saxon single-particle basis. This basis treats bound and continuum states on an equal footing. We find a significant quenching of spectroscopic factors in the neutron-rich oxygen isotopes, pointing to enhanced many-body correlations induced by strong coupling to the scattering continuum above the neutron emission thresholds.Comment: 3 figure

    Microscopic approach to large-amplitude deformation dynamics with local QRPA inertial masses

    Full text link
    We have developed a new method for determining microscopically the fivedimensional quadrupole collective Hamiltonian, on the basis of the adiabatic self-consistent collective coordinate method. This method consists of the constrained Hartree-Fock-Bogoliubov (HFB) equation and the local QRPA (LQRPA) equations, which are an extension of the usual QRPA (quasiparticle random phase approximation) to non-HFB-equilibrium points, on top of the CHFB states. One of the advantages of our method is that the inertial functions calculated with this method contain the contributions of the time-odd components of the mean field, which are ignored in the widely-used cranking formula. We illustrate usefulness of our method by applying to oblate-prolate shape coexistence in 72Kr and shape phase transition in neutron-rich Cr isotopes around N=40.Comment: 6pages, talk given at Rutherford Centennial Conference on Nuclear Physics, 8 - 12 August 2011, The University of Mancheste

    Quadrupole collectivity beyond N=28: Intermediate-energy Coulomb excitation of 47,48Ar

    Full text link
    We report on the first experimental study of quadrupole collectivity in the very neutron-rich nuclei \nuc{47,48}{Ar} using intermediate-energy Coulomb excitation. These nuclei are located along the path from doubly-magic Ca to collective S and Si isotopes, a critical region of shell evolution and structural change. The deduced B(E2)B(E2) transition strengths are confronted with large-scale shell-model calculations in the sdpfsdpf shell using the state-of-the-art SDPF-U and EPQQM effective interactions. The comparison between experiment and theory indicates that a shell-model description of Ar isotopes around N=28 remains a challenge.Comment: Accepted for publication in Physical Review Letters, typos fixed in resubmission on April 1

    MOMDIS: a Glauber model computer code for knockout reactions

    Full text link
    A computer program is described to calculate momentum distributions in stripping and diffraction dissociation reactions. A Glauber model is used with the scattering wavefunctions calculated in the eikonal approximation. The program is appropriate for knockout reactions at intermediate energy collisions (30 MeV \leq Elab/_{lab}/nucleon 2000\leq 2000 MeV). It is particularly useful for reactions involving unstable nuclear beams, or exotic nuclei (e.g. neutron-rich nuclei), and studies of single-particle occupancy probabilities (spectroscopic factors) and other related physical observables. Such studies are an essential part of the scientific program of radioactive beam facilities, as in for instance the proposed RIA (Rare Isotope Accelerator) facility in the US.Comment: 22 pages. Accepted for publication in Computer Physics Communications. Code available from CPC web sit
    corecore