1,633 research outputs found
Microscopic approach to large-amplitude deformation dynamics with local QRPA inertial masses
We have developed a new method for determining microscopically the
fivedimensional quadrupole collective Hamiltonian, on the basis of the
adiabatic self-consistent collective coordinate method. This method consists of
the constrained Hartree-Fock-Bogoliubov (HFB) equation and the local QRPA
(LQRPA) equations, which are an extension of the usual QRPA (quasiparticle
random phase approximation) to non-HFB-equilibrium points, on top of the CHFB
states. One of the advantages of our method is that the inertial functions
calculated with this method contain the contributions of the time-odd
components of the mean field, which are ignored in the widely-used cranking
formula. We illustrate usefulness of our method by applying to oblate-prolate
shape coexistence in 72Kr and shape phase transition in neutron-rich Cr
isotopes around N=40.Comment: 6pages, talk given at Rutherford Centennial Conference on Nuclear
Physics, 8 - 12 August 2011, The University of Mancheste
Spectral Properties and Synchronization in Coupled Map Lattices
Spectral properties of Coupled Map Lattices are described. Conditions for the
stability of spatially homogeneous chaotic solutions are derived using linear
stability analysis. Global stability analysis results are also presented. The
analytical results are supplemented with numerical examples. The quadratic map
is used for the site dynamics with different coupling schemes such as global
coupling, nearest neighbor coupling, intermediate range coupling, random
coupling, small world coupling and scale free coupling.Comment: 10 pages with 15 figures (Postscript), REVTEX format. To appear in
PR
Is the structure of 42Si understood?
A more detailed test of the implementation of nuclear forces that drive shell
evolution in the pivotal nucleus \nuc{42}{Si} -- going beyond earlier
comparisons of excited-state energies -- is important. The two leading
shell-model effective interactions, SDPF-MU and SDPF-U-Si, both of which
reproduce the low-lying \nuc{42}{Si}() energy, but whose predictions for
other observables differ significantly, are interrogated by the population of
states in neutron-rich \nuc{42}{Si} with a one-proton removal reaction from
\nuc{43}{P} projectiles at 81~MeV/nucleon. The measured cross sections to the
individual \nuc{42}{Si} final states are compared to calculations that combine
eikonal reaction dynamics with these shell-model nuclear structure overlaps.
The differences in the two shell-model descriptions are examined and linked to
predicted low-lying excited states and shape coexistence. Based on the
present data, which are in better agreement with the SDPF-MU calculations, the
state observed at 2150(13)~keV in \nuc{42}{Si} is proposed to be the ()
level.Comment: accepted in Physical Review Letter
Population of neutron unbound states via two-proton knockout reactions
The two-proton knockout reaction 9Be(26Ne,O2p) was used to explore excited
unbound states of 23O and 24O. In 23O a state at an excitation energy of
2.79(13) MeV was observed. There was no conclusive evidence for the population
of excited states in 24O.Comment: 6 pages, 3 figures, Proc. 9th Int. Spring Seminar on Nucl. Phys.
Changing Facets of Nuclear Structure, May 20-34, 200
Stability of a neural network model with small-world connections
Small-world networks are highly clustered networks with small distances among
the nodes. There are many biological neural networks that present this kind of
connections. There are no special weightings in the connections of most
existing small-world network models. However, this kind of simply-connected
models cannot characterize biological neural networks, in which there are
different weights in synaptic connections. In this paper, we present a neural
network model with weighted small-world connections, and further investigate
the stability of this model.Comment: 4 pages, 3 figure
Spectroscopy of P using the one-proton knockout reaction
The structure of P was studied with a one-proton knockout reaction
at88~MeV/u from a S projectile beam at NSCL. The rays from
thedepopulation of excited states in P were detected with GRETINA,
whilethe P nuclei were identified event-by-event in the focal plane of
theS800 spectrograph. The level scheme of P was deduced up to 7.5 MeV
using coincidences. The observed levels were attributed to
protonremovals from the -shell and also from the deeply-bound
orbital.The orbital angular momentum of each state was derived from the
comparisonbetween experimental and calculated shapes of individual
(-gated)parallel momentum distributions. Despite the use of different
reactions andtheir associate models, spectroscopic factors, , derived
from theS knockout reaction agree with those obtained earlier
fromS(,\nuc{3}{He}) transfer, if a reduction factor , as
deducedfrom inclusive one-nucleon removal cross sections, is applied to the
knockout transitions.In addition to the expected proton-hole configurations,
other states were observedwith individual cross sections of the order of
0.5~mb. Based on their shiftedparallel momentum distributions, their decay
modes to negative parity states,their high excitation energy (around 4.7~MeV)
and the fact that they were notobserved in the (,\nuc{3}{He}) reaction, we
propose that they may resultfrom a two-step mechanism or a nucleon-exchange
reaction with subsequent neutronevaporation. Regardless of the mechanism, that
could not yet be clarified, thesestates likely correspond to neutron core
excitations in \nuc{35}{P}. Thisnewly-identified pathway, although weak, offers
the possibility to selectivelypopulate certain intruder configurations that are
otherwise hard to produceand identify.Comment: 5 figures, 1 table, accepted for publication in Physical Review
Spectroscopy of neutron-unbound F
The ground state of F has been observed as an unbound resonance
keV above the ground state of F. Comparison of this
result with USDA/USDB shell model predictions leads to the conclusion that the
F ground state is primarily dominated by -shell configurations. Here
we present a detailed report on the experiment in which the ground state
resonance of F was first observed. Additionally, we report the first
observation of a neutron-unbound excited state in F at an excitation
energy of keV.Comment: 10 pages, 11 figures, Accepted for publication in Phys. Rev.
Mesoscopic fluctuations of the Density of States and Conductivity in the middle of the band of Disordered Lattices
The mesoscopic fluctuations of the Density of electronic States (DoS) and of
the conductivity of two- and three- dimensional lattices with randomly
distributed substitutional impurities are studied. Correlations of the levels
lying above (or below) the Fermi surface, in addition to the correlations of
the levels lying on opposite sides of the Fermi surface, take place at half
filling due to nesting. The Bragg reflections mediate to increase static
fluctuations of the conductivity in the middle of the band which change the
distribution function of the conductivity at half- filling.Comment: 5 pages, 3 figure
TOF-Brho Mass Measurements of Very Exotic Nuclides for Astrophysical Calculations at the NSCL
Atomic masses play a crucial role in many nuclear astrophysics calculations.
The lack of experimental values for relevant exotic nuclides triggered a rapid
development of new mass measurement devices around the world. The
Time-of-Flight (TOF) mass measurements offer a complementary technique to the
most precise one, Penning trap measurements, the latter being limited by the
rate and half-lives of the ions of interest. The NSCL facility provides a
well-suited infrastructure for TOF mass measurements of very exotic nuclei. At
this facility, we have recently implemented a TOF-Brho technique and performed
mass measurements of neutron-rich nuclides in the Fe region, important for
r-process calculations and for calculations of processes occurring in the crust
of accreting neutron stars.Comment: 8 pages, 4 figures, submitted to Journal of Physics G, proceedings of
Nuclear Physics in Astrophysics II
- …
