139 research outputs found
Quantifying Effusion Rates at Active Volcanoes through Integrated Time-Lapse Laser Scanning and Photography
During volcanic eruptions, measurements of the rate at which magma is erupted underpin hazard assessments. For eruptions dominated by the effusion of lava, estimates are often made using satellite data; here, in a case study at Mount Etna (Sicily), we make the first measurements based on terrestrial laser scanning (TLS), and we also include explosive products. During the study period (17–21 July, 2012), regular strombolian explosions were occurring within the Bocca Nuova crater, producing a ~50 m high scoria cone and a small lava flow field. TLS surveys over multi-day intervals determined a mean cone growth rate (effusive and explosive products) of ~0.24 m3s-1. Differences between 0.3-m-resolution DEMs acquired at 10-minute intervals captured the evolution of a breakout lava flow lobe advancing at 0.01–0.03 m3s-1. Partial occlusion within the crater prevented similar measurement of the main flow, but integrating TLS data with time-lapse imagery enabled lava viscosity (7.4 × 105 Pa s) to be derived from surface velocities and, hence, a flux of 0.11 m3s-1 to be calculated. The total dense-rock equivalent magma discharge estimates range from ~0.1 to ~0.2 m3s-1 over the measurement period, and suggest that simultaneous estimates from satellite data are somewhat overestimated. Our results support the use of integrated TLS and time-lapse photography for ground-truthing space-based measurements and highlight the value of interactive image analysis when automated approaches such as particle image velocimetry (PIV) fail
Dynamics and hazards of pyroclastic avalanches at Etna volcano (Italy)
We present a multidisciplinary research aimed at quantifying the conditional probabilities for hazards associated with pyroclastic avalanches at Etna, which combines physical and numerical modeling of granular avalanches and probabilistic analysis. Pyroclastic avalanches are modeled using the depth-averaged model IMEX-SfloW2D, which is able to simulate the transient propagation and emplacement of granular flows generated by the collapse of a prescribed volume of granular material. Preliminary sensitivity analysis allowed us to identify the main controlling parameters of the dynamics, i.e. the total avalanche mass, the initial position of the collapsing granular mass (and the associated terrain morphology), the initial avalanche velocity, and the two rheological parameters which determine the mechanical properties of the flow. While the first two parameters can be considered as “scenario parameters” in the definition of the hazards, the initial velocity and the rheological parameters need to be calibrated. We therefore adopted a methodology for the statistical calibration of the physical model parameters based on field observations. We used data from the pyroclastic avalanche that occurred on February 10, 2022 at Etna, for which we had an accurate mapping of the deposit and some estimates of the total mass and the initial volume. We then run a preliminary ensemble of numerical simulations, with fixed initial volume and position, to calibrate the other input parameters. Based on the accuracy of the matching of the simulatedand observed deposits (measured by the Jaccard Index), we extracted from the simulation ensemble a subsample of equally probable combinations of initial velocities and rheological parameters. We then built an ensemble of model input parameters, with varying (i) avalanche volumes, (ii) initial positions, (iii) velocity, and (iv) rheological coefficients. The initial volume range was chosen within the range of observed pyroclastic avalanches at Etna (i.e., between 0.1 and 3 × 106 m3), using a prescribed probability distribution extracted from the literature data. The initial positions have been chosen on the flanks of the South East Crater of Etna, with homogeneous spatial distribution. The initial velocity and the rheological coefficients were chosen from the subsample created with the calibration. Finally, a semi-automatic procedure (digital workflow) running the Monte Carlo simulation allowed us to produce the first probabilistic map of pyroclastic avalanche invasion at Etna. Such a map, conditional to the occurrence of a pyroclastic avalanche event, can be used to identify the hazardous areas of the volcano and to plan mitigation measures
Determination of SO2 fluxes from Mt. Etna exploiting S5P-TROPOMI and ground-based UV camera observations
Mapping Volcanic Deposits of the 2011–2015 Etna Eruptive Events Using Satellite Remote Sensing
Estimates of lava volumes provide important data on the lava flooding history and evolution of a volcano. For mapping volcanic deposits, including lava flows, the advancement of satellite remote sensing techniques offers a great potential. Here we characterize the eruptive events occurred at Mt Etna between January 2011 and December 2015 leading to the emplacement of numerous lava flows and to the formation of a new pyroclastic cone (NSEC) on the eastern flank of the South East Crater. The HOTSAT system is used to analyze remote sensing data acquired by the SEVIRI sensor in order to detect the thermal anomalies from active lava flows and calculate the associated radiative power. The time-series analysis of SEVIRI data provides an estimation of event magnitude and intensity of the effusive material erupted during each event. The cumulative volume estimated from SEVIRI images from 2011 to 2015 adds up to ~106 millions of cubic meters of lava, with a time-averaged rate of ~0.68 m3 s−1. This estimate is independently supported and bounded using a topographic approach, i.e., by subtracting the last topography of Etna updated to 2005 from a 2015 digital elevation model (DEM), produced using tri-stereo Pléiades satellite images acquired on December 18, 2015. The total volume of products erupted from 2005 to 2015, calculated from topography difference by integration of the thickness distribution over the area covered, is about 287 × 106 m3, of which ~55 × 106 m3 is the volume of the NSEC cone. This 10-year volume is below the typical erupted volumes on decadal scale at Mt Etna, interrupting its stable and resilient output trend
The VEI 2 Christmas 2018 Etna Eruption: A Small But Intense Eruptive Event or the Starting Phase of a Larger One?
The Etna flank eruption that started on 24 December 2018 lasted a few days and involved the opening of an eruptive fissure, accompanied by a seismic swarm and shallow earthquakes, significant SO2 flux release, and by large and widespread ground deformation, especially on the eastern flank of the volcano. Lava fountains and ash plumes from the uppermost eruptive fissure accompanied the opening stage, causing disruption to Catania International Airport, and were followed by a quiet lava effusion within the barren Valle del Bove depression until 27 December. This was the first flank eruption to occur at Etna in the last decade, during which eruptive activity was confined to the summit craters and resulted in lava fountains and lava flow output from the crater rims. In this paper, we used ground and satellite remote sensing techniques to describe the sequence of events, quantify the erupted volumes of lava, gas, and tephra, and assess volcanic hazards.Publishedid 9056V. Pericolosità vulcanica e contributi alla stima del rischioJCR Journa
The Influence of Volcano Topographic Changes on Infrasound Amplitude: Lava Fountains at Mt. Etna in 2021
Infrasound signals are used to investigate and monitor active volcanoes during eruptive and degassing activity. Infrasound amplitude information has been used to estimate eruptive parameters such as plume height, magma discharge rate, and lava fountain height. Active volcanoes are characterized by pronounced topography and, during eruptive activity, the topography can change rapidly, affecting the observed infrasound amplitudes. While the interaction of infrasonic signals with topography has been widely investigated over the past decade, there has been limited work on the impact of changing topography on the infrasonic amplitudes. In this work, the infrasonic signals accompanying 57 lava fountain paroxysms at Mt. Etna (Italy) during 2021 were analyzed. In particular, the temporal and spatial variations of the infrasound amplitudes were investigated. During 2021, significant changes in the topography around the most active crater (the South East Crater) took place and were reconstructed in detail using high resolution imagery from unoccupied aerial system surveys. Through analysis of the observed infrasound signals and numerical simulations of the acoustic wavefield, we demonstrate that the observed spatial and temporal variation in the infrasound signal amplitudes can largely be explained by the combined effects of changes in the location of the acoustic source and changes in the near-vent topography, together with source acoustic amplitude variations. This work demonstrates the importance of accurate source locations and high-resolution topographic information, particularly in the near-vent region where the topography is most likely to change rapidly and illustrates that changing topography should be considered when interpreting local infrasound observations over long time scales
- …
