182 research outputs found
Temporal Relational Reasoning in Videos
Temporal relational reasoning, the ability to link meaningful transformations
of objects or entities over time, is a fundamental property of intelligent
species. In this paper, we introduce an effective and interpretable network
module, the Temporal Relation Network (TRN), designed to learn and reason about
temporal dependencies between video frames at multiple time scales. We evaluate
TRN-equipped networks on activity recognition tasks using three recent video
datasets - Something-Something, Jester, and Charades - which fundamentally
depend on temporal relational reasoning. Our results demonstrate that the
proposed TRN gives convolutional neural networks a remarkable capacity to
discover temporal relations in videos. Through only sparsely sampled video
frames, TRN-equipped networks can accurately predict human-object interactions
in the Something-Something dataset and identify various human gestures on the
Jester dataset with very competitive performance. TRN-equipped networks also
outperform two-stream networks and 3D convolution networks in recognizing daily
activities in the Charades dataset. Further analyses show that the models learn
intuitive and interpretable visual common sense knowledge in videos.Comment: camera-ready version for ECCV'1
Online Domain Adaptation for Multi-Object Tracking
Automatically detecting, labeling, and tracking objects in videos depends
first and foremost on accurate category-level object detectors. These might,
however, not always be available in practice, as acquiring high-quality large
scale labeled training datasets is either too costly or impractical for all
possible real-world application scenarios. A scalable solution consists in
re-using object detectors pre-trained on generic datasets. This work is the
first to investigate the problem of on-line domain adaptation of object
detectors for causal multi-object tracking (MOT). We propose to alleviate the
dataset bias by adapting detectors from category to instances, and back: (i) we
jointly learn all target models by adapting them from the pre-trained one, and
(ii) we also adapt the pre-trained model on-line. We introduce an on-line
multi-task learning algorithm to efficiently share parameters and reduce drift,
while gradually improving recall. Our approach is applicable to any linear
object detector, and we evaluate both cheap "mini-Fisher Vectors" and expensive
"off-the-shelf" ConvNet features. We quantitatively measure the benefit of our
domain adaptation strategy on the KITTI tracking benchmark and on a new dataset
(PASCAL-to-KITTI) we introduce to study the domain mismatch problem in MOT.Comment: To appear at BMVC 201
Deep Fishing: Gradient Features from Deep Nets
Convolutional Networks (ConvNets) have recently improved image recognition
performance thanks to end-to-end learning of deep feed-forward models from raw
pixels. Deep learning is a marked departure from the previous state of the art,
the Fisher Vector (FV), which relied on gradient-based encoding of local
hand-crafted features. In this paper, we discuss a novel connection between
these two approaches. First, we show that one can derive gradient
representations from ConvNets in a similar fashion to the FV. Second, we show
that this gradient representation actually corresponds to a structured matrix
that allows for efficient similarity computation. We experimentally study the
benefits of transferring this representation over the outputs of ConvNet
layers, and find consistent improvements on the Pascal VOC 2007 and 2012
datasets.Comment: To appear at BMVC 201
Exploring the Limitations of Behavior Cloning for Autonomous Driving
Driving requires reacting to a wide variety of complex environment conditions
and agent behaviors. Explicitly modeling each possible scenario is unrealistic.
In contrast, imitation learning can, in theory, leverage data from large fleets
of human-driven cars. Behavior cloning in particular has been successfully used
to learn simple visuomotor policies end-to-end, but scaling to the full
spectrum of driving behaviors remains an unsolved problem. In this paper, we
propose a new benchmark to experimentally investigate the scalability and
limitations of behavior cloning. We show that behavior cloning leads to
state-of-the-art results, including in unseen environments, executing complex
lateral and longitudinal maneuvers without these reactions being explicitly
programmed. However, we confirm well-known limitations (due to dataset bias and
overfitting), new generalization issues (due to dynamic objects and the lack of
a causal model), and training instability requiring further research before
behavior cloning can graduate to real-world driving. The code of the studied
behavior cloning approaches can be found at
https://github.com/felipecode/coiltraine
Multimodal 3D Object Detection from Simulated Pretraining
The need for simulated data in autonomous driving applications has become
increasingly important, both for validation of pretrained models and for
training new models. In order for these models to generalize to real-world
applications, it is critical that the underlying dataset contains a variety of
driving scenarios and that simulated sensor readings closely mimics real-world
sensors. We present the Carla Automated Dataset Extraction Tool (CADET), a
novel tool for generating training data from the CARLA simulator to be used in
autonomous driving research. The tool is able to export high-quality,
synchronized LIDAR and camera data with object annotations, and offers
configuration to accurately reflect a real-life sensor array. Furthermore, we
use this tool to generate a dataset consisting of 10 000 samples and use this
dataset in order to train the 3D object detection network AVOD-FPN, with
finetuning on the KITTI dataset in order to evaluate the potential for
effective pretraining. We also present two novel LIDAR feature map
configurations in Bird's Eye View for use with AVOD-FPN that can be easily
modified. These configurations are tested on the KITTI and CADET datasets in
order to evaluate their performance as well as the usability of the simulated
dataset for pretraining. Although insufficient to fully replace the use of real
world data, and generally not able to exceed the performance of systems fully
trained on real data, our results indicate that simulated data can considerably
reduce the amount of training on real data required to achieve satisfactory
levels of accuracy.Comment: 12 pages, part of proceedings for the NAIS 2019 symposiu
Activity representation with motion hierarchies
International audienceComplex activities, e.g., pole vaulting, are composed of a variable number of sub-events connected by complex spatio-temporal relations, whereas simple actions can be represented as sequences of short temporal parts. In this paper, we learn hierarchical representations of activity videos in an unsupervised manner. These hierarchies of mid-level motion components are data-driven decompositions specific to each video. We introduce a spectral divisive clustering algorithm to efficiently extract a hierarchy over a large number of tracklets (i.e., local trajectories). We use this structure to represent a video as an unordered binary tree. We model this tree using nested histograms of local motion features. We provide an efficient positive definite kernel that computes the structural and visual similarity of two hierarchical decompositions by relying on models of their parent-child relations. We present experimental results on four recent challenging benchmarks: the High Five dataset [Patron-Perez et al, 2010], the Olympics Sports dataset [Niebles et al, 2010], the Hollywood 2 dataset [Marszalek et al, 2009], and the HMDB dataset [Kuehne et al, 2011]. We show that pervideo hierarchies provide additional information for activity recognition. Our approach improves over unstructured activity models, baselines using other motion decomposition algorithms, and the state of the art
- …
