350 research outputs found

    Influence of nuclear de-excitation on observables relevant for space exploration

    Full text link
    The composition of the space radiation environment inside spacecrafts is modified by the interaction with shielding material, with equipment and even with the astronauts' bodies. Accurate quantitative estimates of the effects of nuclear reactions are necessary, for example, for dose estimation and prediction of single-event-upset rates. To this end, it is necessary to construct predictive models for nuclear reactions, which usually consist of an intranuclear-cascade or quantum-molecular-dynamics stage, followed by a nuclear-de-excitation stage. While it is generally acknowledged that it is necessary to accurately simulate the first reaction stage, transport-code users often neglect or underestimate the importance of the choice of the de-excitation code. The purpose of this work is to prove that the de-excitation model is in fact a non-negligible source of uncertainty for the prediction of several observables of crucial importance for space applications. For some particular observables, the systematic uncertainty due to the de-excitation model actually dominates the total uncertainty. Our point will be illustrated by making use of nucleon-nucleus calculations performed with several intranuclear-cascade/de-excitation models, such as the Li\`{e}ge Intranuclear Cascade model (INCL) and Isabel (for the cascade part) and ABLA07, Dresner, GEM, GEMINI++ and SMM (on the de-excitation side).Comment: 12 pages, 6 figures. Presented at the 38th COSPAR Scientific Assembly (Bremen, Germany, 18-25 July 2010). Submitted to Advances in Space Researc

    Production of cold fragments in nucleus-nucleus collisions in the Fermi-energy domain

    Get PDF
    The reaction mechanism of nucleus-nucleus collisions at projectile energies around the Fermi energy is investigated with emphasis on the production of fragmentation-like residues. The results of simulations are compared to experimental mass distributions of elements with Z = 21 - 29 observed in the reactions 86Kr+124,112Sn at 25 AMeV. The model of incomplete fusion is modified and a component of excitation energy of the cold fragment dependent on isospin asymmetry is introduced. The modifications in the model of incomplete fusion appear consistent with both overall model framework and available experimental data. A prediction is provided for the production of very neutron-rich nuclei using a secondary beam of 132Sn where e.g. the reaction 132Sn+238U at 28 AMeV appears as a possible alternative to the use of fragmentation reactions at higher energies.Comment: LaTeX, 15 pages, 5 figures, minor modifications, accepted for publication in Nuclear Physics

    Beating of monopole modes in nuclear dynamics

    Get PDF
    Time-dependent Hartree-Fock simulations of the evolution of excited gold fragments have been performed. The observed dynamics appears more complex than the collective expansion picture. The minimum density is often not reached during the first density oscillation because of the beating of several collective compression modes.Comment: 14 Latex pages including 4 figures. Nucl. Phys. A (in press

    Production mechanism of hot nuclei in violent collisions in the Fermi energy domain

    Full text link
    A production mechanism of highly excited nuclei formed in violent collisions in the Fermi energy domain is investigated. The collision of two nuclei is decomposed into several stages which are treated separately. Simplified exciton concept is used for the description of pre-equilibrium emission. A modified spectator-participant scenario is used where motion along classical Coulomb trajectories is assumed. The participant and one of the spectator zones undergo incomplete fusion. Excitation energies of both cold and hot fragment are determined. Results of the calculation are compared to recent experimental data in the Fermi energy domain. Data on hot projectile-like, mid-velocity and fusion-like sources are described consistently. Geometric aspects of pre-equilibrium emission are revealed. Explanations to previously unexplained experimental phenomena are given. Energy deposited into non-thermal degrees of freedom is estimated.Comment: To appear in Nuclear Physics A, 27 pages, 19 figures, LaTe

    CEM2k and LAQGSM as Event Generators for Space-Radiation-Shielding and Cosmic-Ray-Propagation Applications

    Full text link
    The CEM2k and LAQGSM codes have been recently developed at Los Alamos National Laboratory to simulate nuclear reactions for a number of applications. We have benchmarked our codes against most available measured data at incident particle energies from 10 MeV to 800 GeV and have compared our results with predictions of other current models used by the nuclear community. Here, we present a brief description of our codes and show illustrative results to show that CEM2k and LAQGSM can be used as reliable event generators for space-radiation-shielding, cosmic-ray-propagation, and other astrophysical applications. Finally, we show the use of our calculated cross sections together with experimental data from our LANL T-16 compilation to produce evaluated files which we use in the GALPROP model of galactic particle propagation to better constrain the size of the CR halo.Comment: 10 pages, 9 figures, LaTeX, talk given at the World Space Congress 2002, 34th COSPAR Scientific Assembly, Houston, Texas, USA, 10-19 October 2002, to appear in Advances in Space Researc

    Production of Neutron-rich Heavy Residues and the Freeze-out Temperature in the Fragmentation of Relativistic 238U Projectiles Determined by the Isospin Thermometer

    Full text link
    Isotope yields of heavy residues produced in collisions of 238U with lead at 1AGeV show indications for a simultaneous break-up process. From the average N-over-Z ratio of the final residues up to Z = 70, the average limiting temperature of the break-up configuration at freeze out was determined to T approximately 5 MeV using the isospin-thermometer method. Consequences for the understanding of other phenomena in highly excited nuclear systems are discussed.Comment: 22 pages, 9 figures, accepted by Nucl. Phys.

    Manifestation of transient effects in fission induced by relativistic heavy-ion collisions

    Full text link
    We examine the manifestation of transient effects in fission by analysing experimental data where fission is induced by peripheral heavy-ion collisions at relativistic energies. Available total nuclear fission cross sections of 238U at 1 A GeV on gold and uranium targets are compared with a nuclear-reaction code, where transient effects in fission are modelled using different approximations to the numerical time-dependent fission-decay width: a new analytical description based on the solution of the Fokker-Planck equation and two widely used but less realistic descriptions, a step function and an exponential-like function. The experimental data are only reproduced when transient effects are considered. The deduced value of the dissipation strength depends strongly on the approximation applied for the time-dependent fission-decay width and is estimated to be of the order of 2x10**21 s**(-1). A careful analysis sheds severe doubts on the use of the exponential-like in-growth function largely used in the past. Finally, we discuss which should be the characteristics of experimental observables to be most sensitive to transient effects in fissionComment: 18 pages, 2 figures, background information on http://www-w2k.gsi.de/kschmidt

    Production of neutron-rich nuclei in fragmentation reactions of 132Sn projectiles at relativistic energies

    Full text link
    The fragmentation of neutron-rich 132Sn nuclei produced in the fission of 238U projectiles at 950 MeV/u has been investigated at the FRagment Separator (FRS) at GSI. This work represents the first investigation of fragmentation of medium-mass radioactive projectiles with a large neutron excess. The measured production cross sections of the residual nuclei are relevant for the possible use of a two-stage reaction scheme (fission+fragmentation) for the production of extremely neutron-rich medium-mass nuclei in future rare-ion-beam facilities. Moreover, the new data will provide a better understanding of the "memory" effect in fragmentation reactions.Comment: 5 pages, 3 figure

    Time-Dependent Hartree-Fock simulation of the expansion of abraded nuclei

    Full text link
    A recent interpretation of the caloric curve based on the expansion of the abraded spectator nucleus is re-analysed in the framework of the Time-Dependent Hartree-Fock (TDHF) evolution. It is shown that the TDHF dynamics is more complex than a single monopolar collective motion at moderate energy. The inclusion of other important collective degrees of freedom may lead to the dynamical creation of hollow structure. Then, low density regions could be locally reached after a long time by the creation of these exotic density profiles. In particular the systematic of the minimum density reached during the expansion (the so-called turning points) appears to be different.Comment: 30 Latex pages including 9 figure

    Mutual heavy ion dissociation in peripheral collisions at ultrarelativistic energies

    Get PDF
    We study mutual dissociation of heavy nuclei in peripheral collisions at ultrarelativistic energies. Earlier this process was proposed for beam luminosity monitoring via simultaneous registration of forward and backward neutrons in zero degree calorimeters at Relativistic Heavy Ion Collider. Electromagnetic dissociation of heavy ions is considered in the framework of the Weizsacker-Williams method and simulated by the RELDIS code. Photoneutron cross sections measured in different experiments and calculated by the GNASH code are used as input for the calculations of dissociation cross sections. The difference in results obtained with different inputs provides a realistic estimation for the systematic uncertainty of the luminosity monitoring method. Contribution to simultaneous neutron emission due to grazing nuclear interactions is calculated within the abrasion model. Good description of CERN SPS experimental data on Au and Pb dissociation gives confidence in predictive power of the model for AuAu and PbPb collisions at RHIC and LHC.Comment: 46 pages with 7 tables and 13 figures, numerical integration accuracy improved, next-to-leading-order corrections include
    corecore