2,231 research outputs found
Phase transitions and phase diagram of the ferroelectric perovskite NBT-BT by anelastic and dielectric measurements
The complex elastic compliance and dielectric susceptibility of
(Na_{0.5}Bi_{0.5})_{1-x}Ba_{x}TiO_{3} (NBT-BT) have been measured in the
composition range between pure NBT and the morphotropic phase boundary
included, 0 <= x <= 0.08. The compliance of NBT presents sharp peaks at the
rhombohedral/tetragonal and tetragonal/cubic transitions, allowing the
determination of the tetragonal region of the phase diagram, up to now
impossible due to the strong lattice disorder and small distortions and
polarizations involved. In spite of ample evidence of disorder and structural
heterogeneity, the R-T transition remains sharp up to x = 0.06, whereas the T-C
transition merges into the diffuse and relaxor-like transition associated with
broad maxima of the dielectric and elastic susceptibilities. An attempt is made
at relating the different features in the anelastic and dielectric curves to
different modes of octahedral rotations and polar cation shifts. The
possibility is also considered that the cation displacements locally have
monoclinic symmetry, as for PZT near the morphotropic phase boundary.Comment: 11 pages, 9 figures, submitted to Phys. Rev.
RHESSI Spectral Fits of Swift GRBs
One of the challenges of the Swift era has been accurately determining Epeak
for the prompt GRB emission. RHESSI, which is sensitive from 30 keV to 17 MeV,
can extend spectral coverage above the Swift-BAT bandpass. Using the public
Swift data, we present results of joint spectral fits for 26 bursts co-observed
by RHESSI and Swift-BAT through May 2007. We compare these fits to estimates of
Epeak which rely on BAT data alone. A Bayesian Epeak estimator gives better
correspondence with our measured results than an estimator relying on
correlations with the Swift power law indices.Comment: 4 pages, 1 figure. To appear in the proceedings of Gamma Ray Bursts
2007, Santa Fe, New Mexico, November 5-9 200
Coherent Control of Trapped Bosons
We investigate the quantum behavior of a mesoscopic two-boson system produced
by number-squeezing ultracold gases of alkali metal atoms. The quantum Poincare
maps of the wavefunctions are affected by chaos in those regions of the phase
space where the classical dynamics produces features that are comparable to
hbar. We also investigate the possibility for quantum control in the dynamics
of excitations in these systems. Controlled excitations are mediated by pulsed
signals that cause Stimulated Raman Adiabatic passage (STIRAP) from the ground
state to a state of higher energy. The dynamics of this transition is affected
by chaos caused by the pulses in certain regions of the phase space. A
transition to chaos can thus provide a method of controlling STIRAP.Comment: 17 figures, Appended a paragraph on section 1 and explained details
behind the hamiltonian on section
Extension of charge-state-distribution calculations for ion-solid collisions towards low velocities and many-electron ions
Knowledge of the detailed evolution of the whole charge-state distribution of projectile ions colliding with targets is required in several fields of research such as material science and atomic and nuclear physics but also in accelerator physics, and in particular in regard to the several foreseen large-scale facilities. However, there is a lack of data for collisions in the nonperturbative energy domain and that involve many-electron projectiles. Starting from the etacha model we developed [Rozet, Nucl. Instrum. Methods Phys. Res., Sect. B 107, 67 (1996)10.1016/0168-583X(95)00800-4], we present an extension of its validity domain towards lower velocities and larger distortions. Moreover, the system of rate equations is able to take into account ions with up to 60 orbital states of electrons. The computed data from the different new versions of the etacha code are compared to some test collision systems. The improvements made are clearly illustrated by 28.9MeVu-1Pb56+ ions, and laser-generated carbon ion beams of 0.045 to 0.5MeVu-1, passing through carbon or aluminum targets, respectively. Hence, those new developments can efficiently sustain the experimental programs that are currently in progress on the "next-generation" accelerators or laser facilities.Fil: Lamour, E.. Centre National de la Recherche Scientifique; Francia. Universite de Paris; FranciaFil: Fainstein, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Galassi, Mariel Elisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Prigent, C.. Centre National de la Recherche Scientifique; Francia. Universite de Paris; FranciaFil: Ramirez, C. A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Rivarola, Roberto Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Rozet, J. P.. Centre National de la Recherche Scientifique; Francia. Universite de Paris; FranciaFil: Trassinelli, M.. Centre National de la Recherche Scientifique; Francia. Universite de Paris; FranciaFil: Vernhet, D.. Centre National de la Recherche Scientifique; Francia. Universite de Paris; Franci
Low-temperature phase transformations of PZT in the morphotropic phase-boundary region
We present anelastic and dielectric spectroscopy measurements of
PbZr(1-x)Ti(x)O(3) with 0.455 < x < 0.53, which provide new information on the
low temperature phase transitions. The tetragonal-to-monoclinic transformation
is first-order for x < 0.48 and causes a softening of the polycrystal Young's
modulus whose amplitude may exceed the one at the cubic-to-tetragonal
transformation; this is explainable in terms of linear coupling between shear
strain components and tilting angle of polarization in the monoclinic phase.
The transition involving rotations of the octahedra below 200 K is visible both
in the dielectric and anelastic losses, and it extends within the tetragonal
phase, as predicted by recent first-principle calculations.Comment: 4 pages, 4 figure
Conedy: a scientific tool to investigate Complex Network Dynamics
We present Conedy, a performant scientific tool to numerically investigate
dynamics on complex networks. Conedy allows to create networks and provides
automatic code generation and compilation to ensure performant treatment of
arbitrary node dynamics. Conedy can be interfaced via an internal script
interpreter or via a Python module
A spectral function tour of electron-phonon coupling outside the Migdal limit
We simulate spectral functions for electron-phonon coupling in a filled band
system - far from the asymptotic limit often assumed where the phonon energy is
very small compared to the Fermi energy in a parabolic band and the Migdal
theorem predicting 1+lambda quasiparticle renormalizations is valid. These
spectral functions are examined over a wide range of parameter space through
techniques often used in angle-resolved photoemission spectroscopy (ARPES).
Analyzing over 1200 simulations we consider variations of the microscopic
coupling strength, phonon energy and dimensionality for two models: a
momentum-independent Holstein model, and momentum-dependent coupling to a
breathing mode phonon. In this limit we find that any `effective coupling',
lambda_eff, inferred from the quasiparticle renormalizations differs from the
microscopic dimensionless coupling characterizing these Hamiltonians, lambda,
and could drastically either over- or under-estimate it depending on the
particular parameters and model. In contrast, we show that perturbation theory
retains good predictive power for low coupling and small momenta, and that the
momentum-dependence of the self-energy can be revealed via the relationship
between velocity renormalization and quasiparticle strength. Additionally we
find that (although not strictly valid) it is often possible to infer the
self-energy and bare electronic structure through a self-consistent
Kramers-Kronig bare-band fitting; and also that through lineshape alone, when
Lorentzian, it is possible to reliably extract the shape of the imaginary part
of a momentum-dependent self-energy without reference to the bare-band.Comment: 15 pages, 11 figures. High resolution available here:
http://www.physics.ubc.ca/~quantmat/ARPES/PUBLICATIONS/Articles/sf_tour.pd
SCUBA Observations of the Host Galaxies of Gamma-Ray Bursts
In recent years, a population of galaxies with huge infrared luminosities and dust masses has been discovered in the submillimetre. Observations suggest that the AGN contribution to the luminosities of these submillimetre-selected galaxies is low; instead their luminosities are thought to be mainly due to strong episodes of star formation following merger events. Our current understanding of GRBs as the endpoints in the life of massive stars suggest that they will be located in such galaxies.We have observed a sample of well-located GRB host galaxies in the submillimetre. Comparing the results with the general submillimetre-selected galaxy population, we find that at low fluxes (S850 ≤ 4 mJy), the two agree well. However, there is a lack of bright GRB hosts in the submillimetre. This finding is reinforced when the results of other groups are included. Possible explanations are discussed. These results help us assess the roles of both GRB host galaxies and submillimetre-selected galaxies in the evolution of the Universe
- …
