3,490 research outputs found

    Design and development of a smart panel with five decentralised control units for the reduction of vibration and sound radiation

    No full text
    This Technical Report discusses the design and the construction of a smart panel with five decentralised direct velocity feedback control units in order to reduce the vibration of the panel dominated by well separated low frequency resonances. Each control unit consists of an accelerometer sensor and a piezoelectric patch strain actuator. The integrated accelerometer signal is fed back to the actuator via a fixed negative control gain. In this way the actuator generates a control excitation proportional and opposite to the measured transverse velocity of the panel so that it produces active damping on the panel. First the open loop frequency response function between the sensor and the actuator of a single channel has been studied and an analogue controller has been designed and tested in order to improve the stability of this control system. Following the stability of all five control units has been assessed using the generalised Nyquist criterion. Finally the performances of the smart panel have been tested with reference to the reduction of the vibrations at the error positions and with reference to the reduction of the radiated sound. Finally in appendix to this Report, a parametric study is presented on the properties of sensor-actuator FRFs measured with different types of piezoelectric patch actuators. The results of this parametric study have been used in order to choose the actuators to be used for the construction of the smart pane

    A Fast Chi-squared Technique For Period Search of Irregularly Sampled Data

    Full text link
    A new, computationally- and statistically-efficient algorithm, the Fast χ2\chi^2 algorithm, can find a periodic signal with harmonic content in irregularly-sampled data with non-uniform errors. The algorithm calculates the minimized χ2\chi^2 as a function of frequency at the desired number of harmonics, using Fast Fourier Transforms to provide O(NlogN)O (N \log N) performance. The code for a reference implementation is provided.Comment: Source code for the reference implementation is available at http://public.lanl.gov/palmer/fastchi.html . Accepted by ApJ. 24 pages, 4 figure

    Strong spectral evolution during the prompt emission of GRB 070616

    Full text link
    Swift has revealed features in GRB early light curves, such as steep decays and X-ray flares, whose properties are consistent with an internal origin though they are far from understood. The steep X-ray decay is often explained using the curvature effect; however a significant number of GRBs display strong spectral evolution during this phase, and a new mechanism must be invoked to explain this. Of particular interest are the longest duration GRBs in which the early emission can be studied in most detail. Here we present data for GRB 070616, in which the prompt emission shows a complex multipeaked structure, leading to one of the longest prompt emission durations ever recorded. We take advantage of extensive coverage of such a long burst by all Swift instruments. Combining data from Swift and Suzaku we study the evolution of the prompt emission spectrum, following the temporal variability of the peak energy and spectral slope.Comment: 4 pages, 2 figures (Fig 1 in colour), contributed talk, submitted to the proceedings of Gamma Ray Bursts 2007, Santa Fe, New Mexico, November 5-9 200

    The ECLAIRs telescope onboard the SVOM mission for gamma-ray burst studies

    Full text link
    The X- and gamma-ray telescope ECLAIRs onboard the future mission for gamma-ray burst studies SVOM (Space-based multi-band astronomical Variable Objects Monitor) is foreseen to operate in orbit from 2013 on. ECLAIRs will provide fast and accurate GRB triggers to other onboard telescopes, as well as to the whole GRB community, in particular ground-based follow-up telescopes. With its very low energy threshold ECLAIRs is particularly well suited for the detection of highly redshifted GRB. The ECLAIRs X- and gamma-ray imaging camera (CXG), used for GRB detection and localization, is combined with a soft X-ray telescope (SXT) for afterglow observations and position refinement. The CXG is a 2D-coded mask imager with a 1024 cm2^2 detection plane made of 80×\times80 CdTe pixels, sensitive from 4 to 300 keV, with imaging capabilities up to about 120 keV and a localization accuracy better than 10 arcmin. The CXG permanently observes a 2 sr-wide field of the sky and provides photon data to the onboard science and triggering unit (UTS) which detects GRB by count-rate increases or by the appearance of a new source in cyclic sky images. The SXT is a mirror focusing X-ray telescope operating from 0.3 to 2 keV with a sensitivity of 1 mCrab for 100 s observations. The spacecraft slews within \simeq3 min in order to place the GRB candidate into the 23×\times23 arcmin2^2 field of view of the SXT, after which it refines the GRB position to about 10 arcsec. GRB alerts are transmitted to ground-observers within tens of seconds via a VHF network and all detected photons are available hours later for detailed analysis. In this paper we present the ECLAIRs concepts, with emphasis on the expected performances.Comment: on behalf of the ECLAIRs collaboration. Proceedings of Gamma-Ray Bursts 2007 conference, Santa Fe, USA, 5-9 November 2007. Published in AIP conf. proc. 1000, 581-584 (2008

    Afterglows of Gamma-Ray Bursts: Short vs. Long GRBs

    Full text link
    We compiled a large sample of Swift-era photometric data on long (Type II) and short (Type I) GRB afterglows. We compare the luminosity and energetics of the different samples to each other and to the afterglows of the pre-Swift era. Here, we present the first results of these studies.Comment: Conference Proceedings, "Gamma-Ray Bursts 2007", Santa Fe, shortened poster presentation; 4 pages, 3 figures; for full updated papers, go here to arXiv:0712.2186 and also here to arXiv:0804.195

    Quantum dynamics of a high-finesse optical cavity coupled with a thin semi-transparent membrane

    Full text link
    We study the quantum dynamics of the cavity optomechanical system formed by a Fabry-Perot cavity with a thin vibrating membrane at its center. We first derive the general multimode Hamiltonian describing the radiation pressure interaction between the cavity modes and the vibrational modes of the membrane. We then restrict the analysis to the standard case of a single cavity mode interacting with a single mechanical resonator and we determine to what extent optical absorption by the membrane hinder reaching a quantum regime for the cavity-membrane system. We show that membrane absorption does not pose serious limitations and that one can simultaneously achieve ground state cooling of a vibrational mode of the membrane and stationary optomechanical entanglement with state-of-the-art apparatuses.Comment: 14 pages, 7 figure

    Functional biases in GRB's spectral parameter correlations

    Full text link
    Gamma Ray Bursts (GRBs) show evidence of different spectral shapes, light curves, duration, host galaxies and they explode within a wide redshift range. However, the most of them seems to follow very tight correlations among some observed quantities relating to their energetic. If true, these correlations have significant implications on burst physics, giving constraints on theoretical models. Moreover, several suggestions have been made to use these correlations in order to calibrate GRBs as standard candles and to constrain the cosmological parameters. We investigate the cosmological relation between low energy α\alpha index in GRBs prompt spectra and the redshift zz. We present a statistical analysis of the relation between the total isotropic energy EisoE_{iso} and the peak energy EpE_p (also known as Amati relation) in GRBs spectra searching for possible functional biases. Possible implications on the EisoE_{iso} vs EpE_p relation of the α\alpha vs (1+z)(1+z) correlation are evaluated. We used MonteCarlo simulations and the boostrap method to evaluate how large are the effects of functional biases on the EisoE_{iso} vs EpE_p. We show that high values of the linear correlation coefficent, up to about 0.8, in the EisoE_{iso} vs EpE_p relation are obtained for random generated samples of GRBs, confirming the relevance of functional biases. Astrophysical consequences from EisoE_{iso} vs EpE_p relation are then to be revised after a more accurate and possibly bias free analysis.Comment: 6 pages, 6 figures, conference poster session: "070228: The Next Decade of Gamma-Ray Burst Afterglows", Amsterdam, March 2007, MNRAS submitte

    SVOM pointing strategy: how to optimize the redshift measurements?

    Full text link
    The Sino-French SVOM mission (Space-based multi-band astronomical Variable Objects Monitor) has been designed to detect all known types of gamma-ray bursts (GRBs) and to provide fast and reliable GRB positions. In this study we present the SVOM pointing strategy which should ensure the largest number of localized bursts allowing a redshift measurement. The redshift measurement can only be performed by large telescopes located on Earth. The best scientific return will be achieved if we are able to combine constraints from both space segment (platform and payload) and ground telescopes (visibility).Comment: Proceedings of Gamma-Ray Bursts 2007 conference, Santa Fe, USA, 5-9 November 2007. Published in AIP conf. proc. 1000, 585-588 (2008

    GRB-triggered searches for gravitational waves in LIGO data

    Full text link
    The LIGO gravitational wave detectors have recently reached their design sensitivity and finished a two-year science run. During this period one year of data with unprecedented sensitivity has been collected. I will briefly describe the status of the LIGO detectors and the overall quality of the most recent science run. I also will present results of a search for inspiral waveforms in gravitational wave data coincident with the short gamma ray burst detected on 1st February 2007, with its sky location error box overlapping a spiral arms of M31. No gravitational wave signals were detected and a binary merger in M31 can be excluded at the 99% confidence level.Comment: 5 pages, 3 figures, contributed talk, submitted to the proceedings of Gamma Ray Bursts 2007, Santa Fe, New Mexico, November 5-9 200

    Screening High-z GRBs with BAT Prompt Emission Properties

    Get PDF
    Detecting high-z GRBs is important for constraining the GRB formation rate, and tracing the history of re-ionization and metallicity of the universe. Based on the current sample of GRBs detected by Swift with known redshifts, we investigated the relationship between red-shift, and spectral and temporal characteristics, using the BAT event-by-event data. We found red-shift trends for the peak-flux-normalized temporal width T90, the light curve variance, the peak flux, and the photon index in simple power-law fit to the BAT event data. We have constructed criteria for screening GRBs with high red-shifts. This will enable us to provide a much faster alert to the GRB community of possible high-z bursts.Comment: 4 pages, 4 figures, to be published in the proceedings of ''Gamma Ray Bursts 2007'', Santa Fe, New Mexico, November 5-
    corecore