14 research outputs found
Clinical factors associated with fatigue over time in paediatric oncology patients receiving chemotherapy
The purpose of this study was to investigate the relationships between clinical factors (including haemoglobin value, chemotherapeutic agents, and corticosteroid use) and changing patterns of fatigue before and for the next 10 days following the start of a new round of chemotherapy in children with cancer. A prospective longitudinal design was used to collect data from 48 paediatric oncology patients who were about to begin a new round of chemotherapy and their parents. Fatigue levels were assessed using multidomain questionnaires with three categories of patient self-report (including ‘General Fatigue', ‘Sleep/Rest Fatigue', and ‘Cognitive Fatigue') and four categories of parent proxy-report (including ‘Lack of Energy', ‘Unable to Function', ‘Altered Sleep', and ‘Altered Mood'). The findings suggest that fatigue from both patient self-report and parent proxy-report changed significantly over time. The major findings from this study are that patients have more problems with fatigue in the first few days after the start of a cycle of chemotherapy. Corticosteroid use and haemoglobin value were associated with significant increases in fatigue that were sustained for several days and reached the highest level of fatigue at day 5 for those receiving concurrent steroids. The association of chemotherapeutic agents with fatigue varied between patient self-report and parent report, but the type of chemotherapeutic agents used was not associated with most changes in fatigue
Genetic modifiers affecting severity of epilepsy caused by mutation of sodium channel Scn2a
Mutations in the voltage-gated sodium channels SCN1A and SCN2A are responsible for several types of human epilepsy. Variable expressivity among family members is a common feature of these inherited epilepsies, suggesting that genetic modifiers may influence the clinical manifestation of epilepsy. The transgenic mouse model Scn2a Q54 has an epilepsy phenotype as a result of a mutation in Scn2a that slows channel inactivation. The mice display progressive epilepsy that begins with short-duration partial seizures that appear to originate in the hippocampus. The partial seizures become more frequent and of longer duration with age and often induce secondary generalized seizures. Clinical severity of the Scn2a Q54 phenotype is influenced by genetic background. Congenic C57BL/6J.Q54 mice exhibit decreased incidence of spontaneous seizures, delayed seizure onset, and longer survival in comparison with [C57BL/6J × SJL/J]F 1 .Q54 mice. This observation indicates that strain SJL/J carries dominant modifier alleles at one or more loci that determine the severity of the epilepsy phenotype. Genome-wide interval mapping in an N 2 backcross revealed two modifier loci on Chromosomes 11 and 19 that influence the clinical severity of of this sodium channel-induced epilepsy. Modifier genes affecting clinical severity in the Scn2a Q54 mouse model may contribute to the variable expressivity seen in epilepsy patients with sodium channel mutations.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46986/1/335_2005_Article_49.pd
