4,613 research outputs found
Application of novel techniques for interferogram analysis to laser-plasma femtosecond probing
Recently, two novel techniques for the extraction of the phase-shift map
(Tomassini {\it et.~al.}, Applied Optics {\bf 40} 35 (2001)) and the electronic
density map estimation (Tomassini P. and Giulietti A., Optics Communication
{\bf 199}, pp 143-148 (2001)) have been proposed. In this paper we apply both
methods to a sample laser-plasma interferogram obtained with femtoseconds probe
pulse, in an experimental setup devoted to laser particle acceleration studies.Comment: Submitted to Laser and Particle Beam
A Control And Data Acquisition System Based On The PXI Bus For The New Photon Beam Position Monitor Prototype
Polyether from a biobased Janus molecule as surfactant for carbon nanotubes
A new polyether (PE) was prepared from a biobased Janus molecule, 2-(2,5-dimethyl-1H-pyrrol-1-yl)-1,3- propanediol (serinol pyrrole, SP). SP was synthesized with very high yield (about 96%) and high atom efficiency (about 80%) by reacting a biosourced molecule, such as serinol, with 2,5-hexanedione in the absence of solvent or catalyst. The reaction of SP with 1,6-dibromohexane led to PE oligomers, that were used as surfactants for multiwalled carbon nanotubes (MWCNT), in ecofriendly polar solvents such as acetone and ethyl acetate. The synergic interaction of aromatic rings and oxyalkylene sequences with the carbon allotrope led to dramatic improvement of surfactant efficiency: only 24% of SP based PE was extracted with ethyl acetate from the adduct with MWCNT, versus 98% of a typical pluronic surfactant. Suspensions of MWCNT-PE adducts in ethyl acetate were stable for months. High resolution transmission electron microscopy revealed a film of oligomers tightly adhered to MWCNT surface
Dynamics of charge-displacement channeling in intense laser-plasma interactions
The dynamics of transient electric fields generated by the interaction of
high intensity laser pulses with underdense plasmas has been studied
experimentally with the proton projection imaging technique. The formation of a
charged channel, the propagation of its front edge and the late electric field
evolution have been characterised with high temporal and spatial resolution.
Particle-in-cell simulations and an electrostatic, ponderomotive model
reproduce the experimental features and trace them back to the ponderomotive
expulsion of electrons and the subsequent ion acceleration.Comment: 5 figures, accepted for publication in New Journal of Physic
Investigating the Links between the Process Parameters and Their Influence on the Aesthetic Evaluation of Selective Laser Melted Parts
This study is a precursor to gaining a deeper understanding of how each parameter of
the Additive Manufacturing (AM) process influences the aesthetic properties of 3D printed
products. Little research has been conducted on this specific aspect of AM. Using insights
from the work presented in this paper, we intend to develop design support tools to give the
designer more control over the printed products in terms of aesthetics.
In this initial work, we fabricated samples using Selective Laser Melting (SLM)
technology, and investigated the parameters geometry, building strategy, and post-processing.
We asked participants to evaluate the visual and physical interaction with the manufactured
samples. Results show that, in addition to geometry and post-processing, the aesthetic
evaluation can also be strongly influenced by the SLM process’ building strategy. This
understanding will enable us to develop tools to give designers more control over the part’s
aesthetic appearance. In addition, we present a systematic procedure and setup to evaluate the
aesthetic appearance of products manufactured using AM
Interactive effects between carbon allotrope fillers on the mechanical reinforcement of polyisoprene based nanocomposites
Interactive effects of carbon allotropes on the mechanical reinforcement of polymer nanocomposites were investigated. Carbon nanotubes (CNT) and nano-graphite with high shape anisotropy (nanoG) were melt blended with poly(1,4- cis-isoprene), as the only fillers or in combination with carbon black (CB), measuring the shear modulus at low strain amplitudes for peroxide crosslinked composites. The nanofiller was found to increase the low amplitude storage modulus of the matrix, with or without CB, by a factor depending on nanofiller type and content. This factor, fingerprint of the nanofiller, was higher for CNT than for nanoG. The filler-polymer interfacial area was able to correlate modulus data of composites with CNT, CB and with the hybrid filler system, leading to the construction of a common master curve. © BME-PT
The geometrical nature of optical resonances : from a sphere to fused dimer nanoparticles
We study the electromagnetic response of smooth gold nanoparticles with shapes varying from a single sphere to two ellipsoids joined smoothly at their vertices. We show that the plasmonic resonance visible in the extinction and absorption cross sections shifts to longer wavelengths and eventually disappears as the mid-plane waist of the composite particle becomes narrower. This process corresponds to an increase of the numbers of internal and scattering modes that are mainly confined to the surface and coupled to the incident field. These modes strongly affect the near field, and therefore are of great importance in surface spectroscopy, but are almost undetectable in the far field
Genetic Variants of the Renin-Angiotensin-Aldosterone System and Reverse Remodeling After Cardiac Resynchronization Therapy
Background: Reverse remodeling (RR) after cardiac resynchronization therapy (CRT) is associated with favorable clinical outcomes in heart failure (HF). The renin-angiotensin-aldosterone system (RAAS) is involved in the remodeling process. Methods and Results: We assessed the association between RR and 8 common RAAS gene variants, which were determined by TaqMan assays, in 156 outpatients with chronic HF. RR was defined as a O15% decrease in left ventricular end systolic volume (LVESV) at 9 (interquartile range 7e12) months after CRT. We matched 76 patients who did not show RR (RR) to 80 RR? control subjects by age, sex, HF etiology, New York Heart Association (NYHA) functional class and left ventricular ejection fraction (LVEF). The frequency of the minor allele of the NR3C2 gene (rs5522 C/T), encoding the mineralocorticoid receptor, was higher in RR than in RR (24/126 vs 10/150; P value after false discovery rate correction: <.0193). Conversely, LVESV decreased significantly less after CRT in carriers of the NR3C2 minor C allele (P 5 .02). After adjustment for age, sex, NYHA functional class, previous myocardial infarction, atrial fibrillation, and LVEF, RR remained independently associated with NR3C2 C allele carriage (odds ratio 3.093, 95% confidence interval 1.253e7.632). Conclusions: The association of RR after CRT with a common polymorphism in the mineralocorticoid receptor gene involved in aldosterone signaling suggests a possible role for variants in RAAS genes in progressive LV function decline, despite apparently effective CRT
Ultrafast dynamics in unaligned MWCNTs decorated with metal nanoparticles
The relaxation dynamics of unaligned multi-walled carbon nanotubes decorated with metallic nanoparticles have been studied by using transient optical measurements. The fast dynamics due to the short-lived free-charge carriers excited by the pump are not affected by the presence of nanoparticles. Conversely, a second long dynamics, absent in bare carbon nanotubes, appears only in the decorated samples. A combination of experiment and theory allows us to ascribe this long dynamics to relaxation channels involving electronic states localized at the tube-nanoparticle interface
- …
