18,740 research outputs found
Characteristics of events with metric-to-decahectometric type II radio bursts associated with CMEs and flares in relation to SEP events
A gradual solar energetic particle (SEP) event is thought to happen when
particles are accelerated at a shock due to a fast coronal mass ejection (CME).
To quantify what kind of solar eruptions can result in such SEP events, we have
conducted detailed investigations on the characteristics of CMEs, solar flares
and m-to-DH wavelength type II radio bursts (herein after m-to-DH type II
bursts) for SEP-associated and non-SEP-associated events, observed during the
period of 1997-2012. Interestingly, 65% of m-to-DH type II bursts associated
with CMEs and flares produced SEP events. The SEP-associated CMEs have higher
sky-plane mean speed, projection corrected speed, and sky-plane peak speed than
those of non-SEP-associated CMEs respectively by 30%, 39%, and 25%, even though
the two sets of CMEs achieved their sky-plane peak speeds at nearly similar
heights within LASCO field of view. We found Pearson's correlation coefficients
between the speeds of CMEs speeds and logarithmic peak intensity of SEP events
are cc = 0.62 and cc = 0.58, respectively. We also found that the
SEP-associated CMEs are on average of three times more decelerated (-21.52
m/s2) than the non-SEP-associated CMEs (-5.63 m/s2). The SEP-associated m type
II bursts have higher frequency drift rate and associated shock speed than
those of the non-SEP-associated events by 70% and 25% respectively. The average
formation heights of m and DH type II radio bursts for SEP-associated events
are lower than for non-SEP-associated events. 93% of SEP-associated events
originate from the western hemisphere and 65% of SEP-associated events are
associated with interacting CMEs. The obtained results indicate that, at least
for the set of CMEs associated with m-to-DH type II bursts, SEP-associated CMEs
are more energetic than those not associated with SEPs, thus suggesting that
they are effective particle accelerators.Comment: 19 pages, 10 figures, 3 tables, accepted for publication by ApS
Solving the global atmospheric equations through heterogeneous reconfigurable platforms
One of the most essential and challenging components in climate modeling is the atmospheric model. To solve multiphysical atmospheric equations, developers have to face extremely complex stencil kernels that are costly in terms of both computing and memory resources. This article aims to accelerate the solution of global shallow water equations (SWEs), which is one of the most essential equation sets describing atmospheric dynamics. We first design a hybrid methodology that employs both the host CPU cores and the field-programmable gate array (FPGA) accelerators to work in parallel. Through a careful adjustment of the computational domains, we achieve a balanced resource utilization and a further improvement of the overall performance. By decomposing the resource-demanding SWE kernel, we manage to map the double-precision algorithm into three FPGAs. Moreover, by using fixed-point and reduced-precision floating point arithmetic, we manage to build a fully pipelined mixed-precision design on a single FPGA, which can perform 428 floating-point and 235 fixed-point operations per cycle. The mixed-precision design with four FPGAs running together can achieve a speedup of 20 over a fully optimized design on a CPU rack with two eight-core processorsand is 8 times faster than the fully optimized Kepler GPU design. As for power efficiency, the mixed-precision design with four FPGAs is 10 times more power efficient than a Tianhe-1A supercomputer node.</jats:p
Destruction of long-range antiferromagnetic order by hole doping
We study the renormalization of the staggered magnetization of a
two-dimensional antiferromagnet as a function of hole doping, in the framework
of the t-J model. It is shown that the motion of holes generates decay of spin
waves into ''particle-hole'' pairs, which causes the destruction of the
long-range magnetic order at a small hole concentration. This effect is mainly
determined by the coherent motion of holes. The value obtained for the critical
hole concentration, of a few percent, is consistent with experimental data for
the doped copper oxide high-Tc superconductors.Comment: 12 pages, 2 figure
Simulasi Diskriminasi Struktur Proses Produksi Yang Berdata Atribut
Data from a production process usually is correlated and doesnot fit normal distribution. In order to detect the existence of strutural changes in production process, especially attribute data, which is focused on changes that are influenced by the data covariance structure, it is necessary to model the covariance function which identical to the spectral distribution first. Accordingly, data is transformed into its spectral distribution by using Walsh-Fourier Transformation so that data will not be correlated and can be analize statistically. Transformed data will be tested with F-test to see if this method can detect the changes. This simulation will use time series data which is generated with INAR (Integer Valued Auto-Regressive) model
Effects of image charges, interfacial charge discreteness, and surface roughness on the zeta potential of spherical electric double layers
We investigate the effects of image charges, interfacial charge discreteness,
and surface roughness on spherical electric double layers in electrolyte
solutions with divalent counter-ions in the setting of the primitive model. By
using Monte Carlo simulations and the image charge method, the zeta potential
profile and the integrated charge distribution function are computed for
varying surface charge strengths and salt concentrations. Systematic
comparisons were carried out between three distinct models for interfacial
charges: 1) SURF1 with uniform surface charges, 2) SURF2 with discrete point
charges on the interface, and 3) SURF3 with discrete interfacial charges and
finite excluded volume. By comparing the integrated charge distribution
function (ICDF) and potential profile, we argue that the potential at the
distance of one ion diameter from the macroion surface is a suitable location
to define the zeta potential. In SURF2 model, we find that image charge effects
strongly enhance charge inversion for monovalent interfacial charges, and
strongly suppress charge inversion for multivalent interfacial charges. For
SURF3, the image charge effect becomes much smaller. Finally, with image
charges in action, we find that excluded volumes (in SURF3) suppress charge
inversion for monovalent interfacial charges and enhance charge inversion for
multivalent interfacial charges. Overall, our results demonstrate that all
these aspects, i.e., image charges, interfacial charge discreteness, their
excluding volumes have significant impacts on the zeta potential, and thus the
structure of electric double layers.Comment: 11 pages, 10 figures, some errors are change
Top quark pair production via polarized and unpolarized photons in Supersymmetric QCD
QCD corrections to top quark pair production via fusion of both polarized and
unpolarized photons are calculated in Supersymmetric Model. The corrections are
found to be sizable. The dependence of the corrections on the masses of the
supersymmetric particles is also investigated. Furthermore, we studied CP
asymmetry effects arising from the complex couplings in the MSSM. The CP
violating parameter can reach for favorable parameter values.Comment: 26 pages, LaTex, including 12 figures in 12 eps files. submitted to
Phys. Rev.
- …
