18,740 research outputs found

    Characteristics of events with metric-to-decahectometric type II radio bursts associated with CMEs and flares in relation to SEP events

    Full text link
    A gradual solar energetic particle (SEP) event is thought to happen when particles are accelerated at a shock due to a fast coronal mass ejection (CME). To quantify what kind of solar eruptions can result in such SEP events, we have conducted detailed investigations on the characteristics of CMEs, solar flares and m-to-DH wavelength type II radio bursts (herein after m-to-DH type II bursts) for SEP-associated and non-SEP-associated events, observed during the period of 1997-2012. Interestingly, 65% of m-to-DH type II bursts associated with CMEs and flares produced SEP events. The SEP-associated CMEs have higher sky-plane mean speed, projection corrected speed, and sky-plane peak speed than those of non-SEP-associated CMEs respectively by 30%, 39%, and 25%, even though the two sets of CMEs achieved their sky-plane peak speeds at nearly similar heights within LASCO field of view. We found Pearson's correlation coefficients between the speeds of CMEs speeds and logarithmic peak intensity of SEP events are cc = 0.62 and cc = 0.58, respectively. We also found that the SEP-associated CMEs are on average of three times more decelerated (-21.52 m/s2) than the non-SEP-associated CMEs (-5.63 m/s2). The SEP-associated m type II bursts have higher frequency drift rate and associated shock speed than those of the non-SEP-associated events by 70% and 25% respectively. The average formation heights of m and DH type II radio bursts for SEP-associated events are lower than for non-SEP-associated events. 93% of SEP-associated events originate from the western hemisphere and 65% of SEP-associated events are associated with interacting CMEs. The obtained results indicate that, at least for the set of CMEs associated with m-to-DH type II bursts, SEP-associated CMEs are more energetic than those not associated with SEPs, thus suggesting that they are effective particle accelerators.Comment: 19 pages, 10 figures, 3 tables, accepted for publication by ApS

    Solving the global atmospheric equations through heterogeneous reconfigurable platforms

    Get PDF
    One of the most essential and challenging components in climate modeling is the atmospheric model. To solve multiphysical atmospheric equations, developers have to face extremely complex stencil kernels that are costly in terms of both computing and memory resources. This article aims to accelerate the solution of global shallow water equations (SWEs), which is one of the most essential equation sets describing atmospheric dynamics. We first design a hybrid methodology that employs both the host CPU cores and the field-programmable gate array (FPGA) accelerators to work in parallel. Through a careful adjustment of the computational domains, we achieve a balanced resource utilization and a further improvement of the overall performance. By decomposing the resource-demanding SWE kernel, we manage to map the double-precision algorithm into three FPGAs. Moreover, by using fixed-point and reduced-precision floating point arithmetic, we manage to build a fully pipelined mixed-precision design on a single FPGA, which can perform 428 floating-point and 235 fixed-point operations per cycle. The mixed-precision design with four FPGAs running together can achieve a speedup of 20 over a fully optimized design on a CPU rack with two eight-core processorsand is 8 times faster than the fully optimized Kepler GPU design. As for power efficiency, the mixed-precision design with four FPGAs is 10 times more power efficient than a Tianhe-1A supercomputer node.</jats:p

    Destruction of long-range antiferromagnetic order by hole doping

    Full text link
    We study the renormalization of the staggered magnetization of a two-dimensional antiferromagnet as a function of hole doping, in the framework of the t-J model. It is shown that the motion of holes generates decay of spin waves into ''particle-hole'' pairs, which causes the destruction of the long-range magnetic order at a small hole concentration. This effect is mainly determined by the coherent motion of holes. The value obtained for the critical hole concentration, of a few percent, is consistent with experimental data for the doped copper oxide high-Tc superconductors.Comment: 12 pages, 2 figure

    Simulasi Diskriminasi Struktur Proses Produksi Yang Berdata Atribut

    Full text link
    Data from a production process usually is correlated and doesnot fit normal distribution. In order to detect the existence of strutural changes in production process, especially attribute data, which is focused on changes that are influenced by the data covariance structure, it is necessary to model the covariance function which identical to the spectral distribution first. Accordingly, data is transformed into its spectral distribution by using Walsh-Fourier Transformation so that data will not be correlated and can be analize statistically. Transformed data will be tested with F-test to see if this method can detect the changes. This simulation will use time series data which is generated with INAR (Integer Valued Auto-Regressive) model

    Effects of image charges, interfacial charge discreteness, and surface roughness on the zeta potential of spherical electric double layers

    Full text link
    We investigate the effects of image charges, interfacial charge discreteness, and surface roughness on spherical electric double layers in electrolyte solutions with divalent counter-ions in the setting of the primitive model. By using Monte Carlo simulations and the image charge method, the zeta potential profile and the integrated charge distribution function are computed for varying surface charge strengths and salt concentrations. Systematic comparisons were carried out between three distinct models for interfacial charges: 1) SURF1 with uniform surface charges, 2) SURF2 with discrete point charges on the interface, and 3) SURF3 with discrete interfacial charges and finite excluded volume. By comparing the integrated charge distribution function (ICDF) and potential profile, we argue that the potential at the distance of one ion diameter from the macroion surface is a suitable location to define the zeta potential. In SURF2 model, we find that image charge effects strongly enhance charge inversion for monovalent interfacial charges, and strongly suppress charge inversion for multivalent interfacial charges. For SURF3, the image charge effect becomes much smaller. Finally, with image charges in action, we find that excluded volumes (in SURF3) suppress charge inversion for monovalent interfacial charges and enhance charge inversion for multivalent interfacial charges. Overall, our results demonstrate that all these aspects, i.e., image charges, interfacial charge discreteness, their excluding volumes have significant impacts on the zeta potential, and thus the structure of electric double layers.Comment: 11 pages, 10 figures, some errors are change

    Top quark pair production via polarized and unpolarized photons in Supersymmetric QCD

    Get PDF
    QCD corrections to top quark pair production via fusion of both polarized and unpolarized photons are calculated in Supersymmetric Model. The corrections are found to be sizable. The dependence of the corrections on the masses of the supersymmetric particles is also investigated. Furthermore, we studied CP asymmetry effects arising from the complex couplings in the MSSM. The CP violating parameter can reach 10210^{-2} for favorable parameter values.Comment: 26 pages, LaTex, including 12 figures in 12 eps files. submitted to Phys. Rev.
    corecore