1,661 research outputs found

    Two-step stabilization of orbital order and the dynamical frustration of spin in the model charge-transfer insulator KCuF3

    Full text link
    We report a combined experimental and theoretical study of KCuF3, which offers - because of this material's relatively simple lattice structure and valence configuration (d9, i.e., one hole in the d-shell) - a particularly clear view of the essential role of the orbital degree of freedom in governing the dynamical coupling between the spin and lattice degrees of freedom. We present Raman and x-ray scattering evidence that the phase behaviour of KCuF3 is dominated above the Neel temperature (T_N = 40 K) by coupled orbital/lattice fluctuations that are likely associated with rotations of the CuF6 octahedra, and we show that these orbital fluctuations are interrupted by a static structural distortion that occurs just above T_N. A detailed model of the orbital and magnetic phases of KCuF3 reveals that these orbital fluctuations - and the related frustration of in-plane spin-order-are associated with the presence of nearly degenerate low-energy spin-orbital states that are highly susceptible to thermal fluctuations over a wide range of temperatures. A striking implication of these results is that the ground state of KCuF3 at ambient pressure lies near a quantum critical point associated with an orbital/spin liquid phase that is obscured by emergent Neel ordering of the spins; this exotic liquid phase might be accessible via pressure studies.Comment: 13 pages, 3 figure

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Optimal deployment of components of cloud-hosted application for guaranteeing multitenancy isolation

    Get PDF
    One of the challenges of deploying multitenant cloud-hosted services that are designed to use (or be integrated with) several components is how to implement the required degree of isolation between the components when there is a change in the workload. Achieving the highest degree of isolation implies deploying a component exclusively for one tenant; which leads to high resource consumption and running cost per component. A low degree of isolation allows sharing of resources which could possibly reduce cost, but with known limitations of performance and security interference. This paper presents a model-based algorithm together with four variants of a metaheuristic that can be used with it, to provide near-optimal solutions for deploying components of a cloud-hosted application in a way that guarantees multitenancy isolation. When the workload changes, the model based algorithm solves an open multiclass QN model to determine the average number of requests that can access the components and then uses a metaheuristic to provide near-optimal solutions for deploying the components. Performance evaluation showed that the obtained solutions had low variability and percent deviation when compared to the reference/optimal solution. We also provide recommendations and best practice guidelines for deploying components in a way that guarantees the required degree of isolation

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentreofmassframeisusedtosuppressthelargemultijetbackground.ThecrosssectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques

    Search for rare quark-annihilation decays, B --> Ds(*) Phi

    Full text link
    We report on searches for B- --> Ds- Phi and B- --> Ds*- Phi. In the context of the Standard Model, these decays are expected to be highly suppressed since they proceed through annihilation of the b and u-bar quarks in the B- meson. Our results are based on 234 million Upsilon(4S) --> B Bbar decays collected with the BABAR detector at SLAC. We find no evidence for these decays, and we set Bayesian 90% confidence level upper limits on the branching fractions BF(B- --> Ds- Phi) Ds*- Phi)<1.2x10^(-5). These results are consistent with Standard Model expectations.Comment: 8 pages, 3 postscript figues, submitted to Phys. Rev. D (Rapid Communications

    Degradation behaviors and mechanisms of MoS2 crystals relevant to bioabsorbable electronics

    Get PDF
    Monolayer molybdenum disulfide (MoS2) exhibits unique semiconducting and bioresorption properties, giving this material enormous potential for electronic/biomedical applications, such as bioabsorbable electronics. In this regard, understanding the degradation performance of monolayer MoS2 in biofluids allows modulation of the properties and lifetime of related bioabsorbable devices and systems. Herein, the degradation behaviors and mechanisms of monolayer MoS2 crystals with different misorientation angles are explored. High-angle grain boundaries (HAGBs) biodegrade faster than low-angle grain boundaries (LAGBs), exhibiting degraded edges with wedge and zigzag shapes, respectively. Triangular pits that formed in the degraded grains have orientations opposite to those of the parent crystals, and these pits grow into larger pits laterally. These behaviors indicate that the degradation is induced and propagated based on intrinsic defects, such as grain boundaries and point defects, because of their high chemical reactivity due to lattice breakage and the formation of dangling bonds. High densities of dislocations and point defects lead to high chemical reactivity and faster degradation. The structural cause of MoS2 degradation is studied, and a feasible approach to study changes in the properties and lifetime of MoS2 by controlling the defect type and density is presented. The results can thus be used to promote the widespread use of two-dimensional materials in bioabsorption applications

    Author Correction: Three-dimensional strain imaging of irradiated chromium using multi-reflection Bragg coherent diffraction

    Get PDF
    The original version of this Article did not correctly credit and cite relevant previous work. The fifth to seventh sentences of the fifth paragraph of the ‘Three-dimensional imaging of the defects’ section previously read: “In our case, BCDI is sensitive to defects such as voids and dislocations through its strain field sensitivity rather than the spatial resolution46. This is illustrated by the relationship between the continuum representation of the crystal, (Formula presented.) , and the diffraction intensity, I(q) in the far field under a perfectly coherent illumination and in the kinematical scattering approximation given by (Formula presented.). Here, r and q are the real and reciprocal space coordinates respectively, (Formula presented.) is the Fourier transform, Q is the measured Bragg peak, and u(r) is the vector displacement field that is a continuum description of how the atoms are displaced from their equilibrium positions47.” The correct version reads: “In our case, BCDI is sensitive to defects such as voids and dislocations through its strain field sensitivity rather than the spatial resolution46. This is demonstrated by the relationship (Formula presented.). whereby (Formula presented.) is the intensity, (Formula presented.) is the mathematical description of the crystal as a continuum, (Formula presented.) denotes the Fourier transformation operator, Q is the Bragg reflection that was measured, and u(r) is the displacement field47.” The final six sentences of the Results section previously read: “Furthermore, underestimating the defect density prevents TEM from accurately determining the corresponding change in properties. For instance, Weiß et al. show a factor of 2 between measured and calculated change in hardness for neutron irradiated EUROFER9771. Meanwhile, Reza et al. report the same discrepancy between Transient Grating Spectroscopy (TGS)-measured and TEM-determined thermal diffusivity for self-ion irradiated tungsten72. It is important to note that when Reza et al. included small defects from molecular dynamics (MD) simulations, the combination of the TEM and MD data matches TGS measurements. This result confirms the theory that point defects play a significant role in the thermal diffusivity of a material and further reinforces the need to accurately characterize small defects in order to evaluate irradiation-induced changes in properties.” This has been replaced with: ““Hirst et al. opined that the underestimated defects density in TEM measurements comes with a corresponding mischaracterization of the materials properties70. This is demonstrated in a study by Weiß et al. who showed that the hardness values obtained from TEM data of neutron irradiated reduced activation ferritic/martensitic steel is significantly smaller than values from tensile testing. This clearly support the notion that underestimation of point defects from TEM analysis which goes into the dispersed barrier hardening model affects the calculated hardness value71. Hence, the difference in the magnitude of swelling between TEM and BCDI estimates is well justified. In a bid to accurately quantify nanoscale defects in irradiated materials, Meslin et al., used multiple characterization techniques which include TEM, Small Angle Neutron Scattering, Positron Annihilation Spectroscopy and Atom Probe Tomography which are sensitive to different types of nanoscale defects. The study clearly demonstrates the strength and complementarities of each technique72. This further support the need to develop multiple characterization techniques that can complements TEM for defects quantification and building predictive tools.” Consequently, Reference 72, which previously read “Reza, A., Yu, H., Mizohata, K. & Hofmann, F. Thermal diffusivity degradation and point defect density in self-ion implanted tungsten. Acta Mater. 193, 270–279 (2020)”, has been replaced by “Meslin, E. et al. Characterization of neutron-irradiated ferritic model alloys and a RPV steel from combined APT, SANS, TEM, and PAS analyses J. Nucl. Mater. 406, 73–83 (2010).” This has been corrected in both the PDF and HTML versions of the Article
    corecore