634 research outputs found
Partial radiogenic heat model for Earth revealed by geoneutrino measurements
The Earth has cooled since its formation, yet the decay of radiogenic isotopes, and in particular uranium, thorium and
potassium, in the planet’s interior provides a continuing heat source. The current total heat flux from the Earth to space is 44:2±1.0 TW, but the relative contributions from residual primordial heat and radiogenic decay remain uncertain. However, radiogenic decay can be estimated from the flux of geoneutrinos, electrically neutral particles that are emitted during radioactive decay and can pass through the Earth virtually unaffected. Here we combine precise measurements of the geoneutrino flux from the Kamioka Liquid-Scintillator Antineutrino Detector, Japan, with existing measurements from the Borexino detector, Italy.We find that decay of uranium-238 and thorium-232 together contribute 20.0^(+8.8)_(-8.6)TW to Earth’s heat
flux. The neutrinos emitted from the decay of potassium-40 are below the limits of detection in our experiments, but are known to contribute 4TW. Taken together, our observations indicate that heat from radioactive decay contributes about half of Earth’s total heat flux. We therefore conclude that Earth’s primordial heat supply has not yet been exhausted
Constraints on θ_(13) from a three-flavor oscillation analysis of reactor antineutrinos at KamLAND
We present new constraints on the neutrino oscillation parameters Δm^2_(21), θ_(12), and θ_(13) from a three flavor
analysis of solar and KamLAND data. The KamLAND data set includes data acquired following a radiopurity upgrade and amounts to a total exposure of 3.49 x 10^(32) target-proton-year. Under the assumption of CPT invariance, a two-flavor analysis (θ_(13) = 0) of the KamLAND and solar data yields the best-fit values tan^2θ_(12) = 0.444^(+0.036)_(-0.030) and Δm^2_(21) = 7.50^(+0.19)_(-0.20) x 10^(-5) eV^2; a three-flavor analysis with θ13 as a free parameter yields the best-fit values tan^2θ_(12) = 0.452^(+0.035)_(-0.033), Δm^2_(21) = 7.50^(+0.19)_(-0.20) x 10^(-5) eV^2, and sin^2θ_(13) = 0.020^(+0.016)_(-0.016). This θ_(13) interval is consistent with other recent work combining the CHOOZ, atmospheric and long-baseline accelerator experiments. We also present a new global θ_(13) analysis, incorporating the CHOOZ, atmospheric, and accelerator data, which indicates sin^2θ_(13) = 0.009^(+0.013)-_(0.007). A nonzero value is suggested, but only at the 79% C.L
Nuclear matrix elements for neutrinoless double-beta decay and double-electron capture
A new generation of neutrinoless double beta decay experiments with improved
sensitivity is currently under design and construction. They will probe
inverted hierarchy region of the neutrino mass pattern. There is also a revived
interest to the resonant neutrinoless double-electron capture, which has also a
potential to probe lepton number conservation and to investigate the neutrino
nature and mass scale. The primary concern are the nuclear matrix elements.
Clearly, the accuracy of the determination of the effective Majorana neutrino
mass from the measured 0\nu\beta\beta-decay half-life is mainly determined by
our knowledge of the nuclear matrix elements. We review recent progress
achieved in the calculation of 0\nu\beta\beta and 0\nu ECEC nuclear matrix
elements within the quasiparticle random phase approximation. A considered
self-consistent approach allow to derive the pairing, residual interactions and
the two-nucleon short-range correlations from the same modern realistic
nucleon-nucleon potentials. The effect of nuclear deformation is taken into
account. A possibility to evaluate 0\nu\beta\beta-decay matrix elements
phenomenologically is discussed.Comment: 24 pages; 80 references. arXiv admin note: substantial text overlap
with arXiv:1101.214
Measurement of the double-\beta decay half-life of ^{136}Xe with the KamLAND-Zen experiment
We present results from the KamLAND-Zen double-beta decay experiment based on
an exposure of 77.6 days with 129 kg of Xe. The measured two-neutrino
double-beta decay half-life of Xe is yr, consistent with a recent
measurement by EXO-200. We also obtain a lower limit for the neutrinoless
double-beta decay half-life, yr at 90%
confidence level (C.L.), which corresponds to almost a five-fold improvement
over previous limits.Comment: 6 pages, 4 figures. Version as published in PR
A compact ultra-clean system for deploying radioactive sources inside the KamLAND detector
We describe a compact, ultra-clean device used to deploy radioactive sources
along the vertical axis of the KamLAND liquid-scintillator neutrino detector
for purposes of calibration. The device worked by paying out and reeling in
precise lengths of a hanging, small-gauge wire rope (cable); an assortment of
interchangeable radioactive sources could be attached to a weight at the end of
the cable. All components exposed to the radiopure liquid scintillator were
made of chemically compatible UHV-cleaned materials, primarily stainless steel,
in order to avoid contaminating or degrading the scintillator. To prevent radon
intrusion, the apparatus was enclosed in a hermetically sealed housing inside a
glove box, and both volumes were regularly flushed with purified nitrogen gas.
An infrared camera attached to the side of the housing permitted real-time
visual monitoring of the cable's motion, and the system was controlled via a
graphical user interface.Comment: Revised author affiliations, corrected typos, made minor improvements
to text, and revised reference
7Be Solar Neutrino Measurement with KamLAND
We report a measurement of the neutrino-electron elastic scattering rate of
862 keV 7Be solar neutrinos based on a 165.4 kton-day exposure of KamLAND. The
observed rate is 582 +/- 90 (kton-day)^-1, which corresponds to a 862 keV 7Be
solar neutrino flux of (3.26 +/- 0.50) x 10^9 cm^-2s^-1, assuming a pure
electron flavor flux. Comparing this flux with the standard solar model
prediction and further assuming three flavor mixing, a nu_e survival
probability of 0.66 +/- 0.14 is determined from the KamLAND data. Utilizing a
global three flavor oscillation analysis, we obtain a total 7Be solar neutrino
flux of (5.82 +/- 0.98) x 10^9 cm^-2s^-1, which is consistent with the standard
solar model predictions.Comment: 8 pages, 6 figures, submitted to Phys. Rev.
White paper: CeLAND - Investigation of the reactor antineutrino anomaly with an intense 144Ce-144Pr antineutrino source in KamLAND
We propose to test for short baseline neutrino oscillations, implied by the
recent reevaluation of the reactor antineutrino flux and by anomalous results
from the gallium solar neutrino detectors. The test will consist of producing a
75 kCi 144Ce - 144Pr antineutrino source to be deployed in the Kamioka Liquid
Scintillator Anti-Neutrino Detector (KamLAND). KamLAND's 13m diameter target
volume provides a suitable environment to measure energy and position
dependence of the detected neutrino flux. A characteristic oscillation pattern
would be visible for a baseline of about 10 m or less, providing a very clean
signal of neutrino disappearance into a yet-unknown, "sterile" state. Such a
measurement will be free of any reactor-related uncertainties. After 1.5 years
of data taking the Reactor Antineutrino Anomaly parameter space will be tested
at > 95% C.L.Comment: White paper prepared for Snowmass-2013; slightly different author
lis
Global neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters
We present the results of a global neutrino oscillation data analysis within
the three-flavour framework. We include latest results from the MINOS
long-baseline experiment (including electron neutrino appearance as well as
anti-neutrino data), updating all relevant solar (SK II+III), atmospheric (SK
I+II+III) and reactor (KamLAND) data. Furthermore, we include a recent
re-calculation of the anti-neutrino fluxes emitted from nuclear reactors. These
results have important consequences for the analysis of reactor experiments and
in particular for the status of the mixing angle . In our
recommended default analysis we find from the global fit that the hint for
non-zero remains weak, at 1.8 for both neutrino mass
hierarchy schemes. However, we discuss in detail the dependence of these
results on assumptions concerning the reactor neutrino analysis.Comment: 15 pages, 10 figures and 2 tables, v2: corrected version, main
conclusions unchanged, references adde
- …
