118 research outputs found

    Automatic Recognition of Sunspots in HSOS Full-Disk Solar Images

    Full text link
    A procedure is introduced to recognise sunspots automatically in solar full-disk photosphere images obtained from Huairou Solar Observing Station, National Astronomical Observatories of China. The images are first pre-processed through Gaussian algorithm. Sunspots are then recognised by the morphological Bot-hat operation and Otsu threshold. Wrong selection of sunspots is eliminated by a criterion of sunspot properties. Besides, in order to calculate the sunspots areas and the solar centre, the solar limb is extracted by a procedure using morphological closing and erosion operations and setting an adaptive threshold. Results of sunspot recognition reveal that the number of the sunspots detected by our procedure has a quite good agreement with the manual method. The sunspot recognition rate is 95% and error rate is 1.2%. The sunspot areas calculated by our method have high correlation (95%) with the area data from USAF/NOAA.Comment: 9 pages, 6 figures, 2 tables, accepted for publication in PAS

    A Statistical Study on Photospheric Magnetic Nonpotentiality of Active Regions and Its Relationship with Flares during Solar Cycles 22-23

    Full text link
    A statistical study is carried out on the photospheric magnetic nonpotentiality in solar active regions and its relationship with associated flares. We select 2173 photospheric vector magnetograms from 1106 active regions observed by the Solar Magnetic Field Telescope at Huairou Solar Observing Station, National Astronomical Observatories of China, in the period of 1988-2008, which covers most of the 22nd and 23rd solar cycles. We have computed the mean planar magnetic shear angle (\bar{\Delta\phi}), mean shear angle of the vector magnetic field (\bar{\Delta\psi}), mean absolute vertical current density (\bar{|J_{z}|}), mean absolute current helicity density (\bar{|h_{c}|}), absolute twist parameter (|\alpha_{av}|), mean free magnetic energy density (\bar{\rho_{free}}), effective distance of the longitudinal magnetic field (d_{E}), and modified effective distance (d_{Em}) of each photospheric vector magnetogram. Parameters \bar{|h_{c}|}, \bar{\rho_{free}}, and d_{Em} show higher correlation with the evolution of the solar cycle. The Pearson linear correlation coefficients between these three parameters and the yearly mean sunspot number are all larger than 0.59. Parameters \bar{\Delta\phi}, \bar{\Delta\psi}, \bar{|J_{z}|}, |\alpha_{av}|, and d_{E} show only weak correlations with the solar cycle, though the nonpotentiality and the complexity of active regions are greater in the activity maximum periods than in the minimum periods. All of the eight parameters show positive correlations with the flare productivity of active regions, and the combination of different nonpotentiality parameters may be effective in predicting the flaring probability of active regions.Comment: 20 pages, 5 figures, 4 tables, accepted for publication in Solar Physic

    CHINESE HERBAL MEDICINE AND PREDNISONE INCREASE PROPORTION OF SPLENIC CD4+CD25-FOXP3+ CELLS AND ALLEVIATE GLOMERULAR LESION IN MRL/LPR MICE

    Get PDF
    Objective: This study investigated the effects of Chinese herbal medicine and prednisone on CD4+FoxP3+ T cells (Tregs) and Th17 cells in the MRL/lpr mouse model of systemic lupus erythematosus. Methods: MRL/lpr mice were treated with herbal medicine (yin-nourishing and heat-clearing therapy), prednisone, and a combination of both for 7 weeks. The proportions of CD4+CD25+FoxP3+ cells, CD4+CD25-FoxP3+ cells, and CD4+IL-17+ cells in splenic mononuclear cell suspension were determined by flow cytometry. Histological slices of kidneys were stained by H&E, PAS, and Masson’s method. Activity indexes (AI) of glomerular lesions were scored. Results: The result showed that both herbal medicine and prednisone significantly increased the proportion of CD4+CD25-FoxP3+ cells (

    A novel marker integrating multiple genetic alterations better predicts platinum sensitivity in ovarian cancer than HRD score

    Get PDF
    Introduction: Platinum-based chemotherapy is the first-line treatment strategy for ovarian cancer patients. The dismal prognosis of ovarian cancer was shown to be stringently associated with the heterogeneity of tumor cells in response to this therapy, therefore understanding platinum sensitivity in ovarian cancer would be helpful for improving patients’ quality of life and clinical outcomes. HRDetect, utilized to characterize patients’ homologous recombination repair deficiency, was used to predict patients’ response to platinum-based chemotherapy. However, whether each of the single features contributing to HRD score is associated with platinum sensitivity remains elusive.Methods: We analyzed the whole-exome sequencing data of 196 patients who received platinum-based chemotherapy from the TCGA database. Genetic features were determined individually to see if they could indicate patients’ response to platinum-based chemotherapy and prognosis, then integrated into a Pt-score employing LASSO regression model to assess its predictive performance.Results and discussion: Multiple genetic features, including bi-allelic inactivation of BRCA1/2 genes and genes involved in HR pathway, multiple somatic mutations in genes involved in DNA damage repair (DDR), and previously reported HRD-related features, were found to be stringently associated with platinum sensitivity and improved prognosis. Higher contributions of mutational signature SBS39 or ID6 predicted improved overall survival. Besides, arm-level loss of heterozygosity (LOH) of either chr4p or chr5q predicted significantly better disease-free survival. Notably, some of these features were found independent of HRD. And SBS3, an HRD-related feature, was found irrelevant to platinum sensitivity. Integrated all candidate markers using the LASSO model to yield a Pt-score, which showed better predictive ability compared to HRDetect in determining platinum sensitivity and predicting patients’ prognosis, and this performance was validated in an independent cohort. The outcomes of our study will be instrumental in devising effective strategies for treating ovarian cancer with platinum-based chemotherapy

    A New Comprehensive Data Set of Solar Filaments of 100 yr Interval. I

    Full text link
    Filaments are very common physical phenomena on the Sun and are often taken as important proxies of solar magnetic activities. The study of filaments has become a hot topic in the space weather research. For a more comprehensive understanding of filaments, especially for an understanding of solar activities of multiple solar cycles, it is necessary to perform a combined multifeature analysis by constructing a data set of multiple solar cycle data. To achieve this goal, we constructed a centennial data set that covers the Hα\alpha data from five observatories around the world. During the data set construction, we encountered varieties of problems, such as data fusion, accurate determination of the solar edge, classifying data by quality, dynamic threshold, and so on, which arose mainly due to multiple sources and a large time span of data. But fortunately, these problems were well solved. The data set includes seven types of data products and eight types of feature parameters with which we can implement the functions of data searching and statistical analyses. It has the characteristics of better continuity and highly complementary to space observation data, especially in the wavelengths not covered by space observations, and covers many solar cycles (including more than 60 yr of high-cadence data). We expect that this new comprehensive data set as well as the tools will help researchers to significantly speed up their search for features or events of interest, for either statistical or case study purposes, and possibly help them get a better and more comprehensive understanding of solar filament mechanisms.Comment: 20 pages, 17 figures, 1 table, accepted for publication in ApJ

    Antibacterial, injectable, and adhesive hydrogel promotes skin healing

    Get PDF
    With the development of material science, hydrogels with antibacterial and wound healing properties are becoming common. However, injectable hydrogels with simple synthetic methods, low cost, inherent antibacterial properties, and inherent promoting fibroblast growth are rare. In this paper, a novel injectable hydrogel wound dressing based on carboxymethyl chitosan (CMCS) and polyethylenimine (PEI) was discovered and constructed. Since CMCS is rich in -OH and -COOH and PEI is rich in -NH2, the two can interact through strong hydrogen bonds, and it is theoretically feasible to form a gel. By changing their ratio, a series of hydrogels can be obtained by stirring and mixing with 5 wt% CMCS aqueous solution and 5 wt% PEI aqueous solution at volume ratios of 7:3, 5:5, and 3:7. Characterized by morphology, swelling rate, adhesion, rheological properties, antibacterial properties, in vitro biocompatibility, and in vivo animal experiments, the hydrogel has good injectability, biocompatibility, antibacterial (Staphylococcus aureus: 56.7 × 107 CFU/mL in the blank group and 2.5 × 107 CFU/mL in the 5/5 CPH group; Escherichia coli: 66.0 × 107 CFU/mL in the blank group and 8.5 × 107 CFU/mL in the 5/5 CPH group), and certain adhesion (0.71 kPa in the 5/5 CPH group) properties which can promote wound healing (wound healing reached 98.02% within 14 days in the 5/5 CPH group) and repair of cells with broad application prospects

    Construction of a century solar chromosphere data set for solar activity related research

    Full text link
    This article introduces our ongoing project “Construction of a Century Solar Chromosphere Data Set for Solar Activity Related Research”. Solar activities are the major sources of space weather that affects human lives. Some of the serious space weather consequences, for instance, include interruption of space communication and navigation, compromising the safety of astronauts and satellites, and damaging power grids. Therefore, the solar activity research has both scientific and social impacts. The major database is built up from digitized and standardized film data obtained by several observatories around the world and covers a timespan more than 100 years. After careful calibration, we will develop feature extraction and data mining tools and provide them together with the comprehensive database for the astronomical community. Our final goal is to address several physical issues: filament behavior in solar cycles, abnormal behavior of solar cycle 24, large-scale solar eruptions, and sympathetic remote brightenings. Significant progresses are expected in data mining algorithms and software development, which will benefit the scientific analysis and eventually advance our understanding of solar cycles.</jats:p
    corecore