33 research outputs found

    Investigation on the interactions of lymphoma cells with paclitaxel by Raman spectroscopy

    No full text
    The single-cell Raman spectra of human Burkitt's lymphoma cells (CA46) including cells treated with different doses of paclitaxel and controls without paclitaxel can be detected by confocal micro-Raman spectroscopy. It shows that the Raman bands at 1094 cm–1assigned to the symmetric stretching vibration mode of O–P–O in the DNA backbone, 1338 cm–1and 1578 cm–1due to adenine and guanine of DNA all decrease in intensity with increasing drug dose. On the contrary, the intensity of peaks at 1257 cm–1due to characteristic vibration ofa-helix of Amide III and 1658 cm–1due to characteristic vibration ofa-helix of Amide I both increases with increasing drug dose. Multivariate statistical methods, such as Principle Components Analysis (PCA) and Linear Discriminant Analysis (LDA) were employed to discriminate normal lymphoma cells (CA46) and cells treated with different doses of paclitaxel. It was found that the sensitivity and specificity of differentiating the treated and untreated cell groups increase with drug doses and approach 100% for the high drug dose, consistent with the perception that the cytotoxicity increases with drug dose. These results suggest that Raman spectroscopy combined with multivariate analysis could become a useful tool for assessing the cytotoxicity of drugs such as paclitaxel on human lymphoma cells.</jats:p

    Label-Free Identification of Early Stages of Breast Ductal Carcinoma via Multiphoton Microscopy

    No full text
    Breast cancer can be cured by early diagnosis. Appropriate and effective clinical treatment benefits from accurate pathological diagnosis. However, due to the lack of effective screening and diagnostic imaging methods, early stages of breast cancer often progress to malignant breast cancer. In this study, multiphoton microscopy (MPM) via two-photon excited fluorescence combined with second-harmonic generation was used for identifying the early stages of breast ductal carcinoma. The results showed differences in both cytological features and collagen distribution among normal breast tissue, atypical ductal hyperplasia, low-grade ductal carcinoma in situ, and high-grade ductal carcinoma in situ with microinvasion. Furthermore, three features extracted from the MPM images were used to describe differences in cytological features, collagen density, and basement membrane circumference in the early stages of breast ductal carcinoma. They revealed that MPM has the ability to identify early stages of breast ductal carcinoma label-free, which would contribute to the early diagnosis and treatment of breast cancer. This study may provide the groundwork for the further application of MPM in the clinic.</jats:p

    Label-Free Imaging of Blood Vessels in Human Normal Breast and Breast Tumor Tissue Using Multiphoton Microscopy

    No full text
    Blood vessels are the important components of the circulatory systems that transport blood throughout the human body and maintain the homeostasis of physiological tissues. Pathologically, blood vessels are often affected by diseases, leading to the formation of unstable, irregular, and hyperpermeable blood vessels. In the tumor microenvironment, abnormal leakage of tumor blood vessels is related to the histological grade and malignant potential of tumors and may also facilitate metastasis of cancer. Visual diagnosis of blood vessels is very important for us to understand the occurrence and development of diseases. Multiphoton microscopy (MPM) is a potential label-free diagnostic tool based on second harmonic generation (SHG) and two-photon excited fluorescence (TPEF). MPM can effectively observe the morphological changes of biological tissues at the molecular and cellular levels. In this work, we demonstrate that label-free MPM can be used to visualize the microstructure of blood vessels in human normal breast and breast tumor tissue. Moreover, MPM can monitor the changes of blood vessels in tumor microenvironment. These results show that the MPM will become a promising technique for clinicians to study the properties of the microstructure of the blood vessels.</jats:p
    corecore