64 research outputs found

    NOA1 Functions in a Temperature-Dependent Manner to Regulate Chlorophyll Biosynthesis and Rubisco Formation in Rice

    Get PDF
    NITRIC OXIDE-ASSOCIATED1 (NOA1) encodes a circularly permuted GTPase (cGTPase) known to be essential for ribosome assembly in plants. While the reduced chlorophyll and Rubisco phenotypes were formerly noticed in both NOA1-supressed rice and Arabidopsis, a detailed insight is still necessary. In this study, by using RNAi transgenic rice, we further demonstrate that NOA1 functions in a temperature-dependent manner to regulate chlorophyll and Rubisco levels. When plants were grown at 30°C, the chlorophyll and Rubisco levels in OsNOA1-silenced plants were only slightly lower than those in WT. However, at 22°C, the silenced plants accumulated far less chlorophyll and Rubisco than WT. It was further revealed that the regulation of chlorophyll and Rubisco occurs at the anabolic level. Etiolated WT seedlings restored chlorophyll and Rubisco accumulations readily once returned to light, at either 30°C or 15°C. Etiolated OsNOA1-silenced plants accumulated chlorophyll and Rubisco to normal levels only at 30°C, and lost this ability at low temperature. On the other hand, de-etiolated OsNOA1-silenced seedlings maintained similar levels of chlorophyll and Rubisco as WT, even after being shifted to 15°C for various times. Further expression analyses identified several candidate genes, including OsPorA (NADPH: protochlorophyllide oxidoreductase A), OsrbcL (Rubisco large subunit), OsRALyase (Ribosomal RNA apurinic site specific lyase) and OsPuf4 (RNA-binding protein of the Puf family), which may be involved in OsNOA1-regulated chlorophyll biosynthesis and Rubisco formation. Overall, our results suggest OsNOA1 functions in a temperature-dependent manner to regulate chlorophyll biosynthesis, Rubisco formation and plastid development in rice

    Vertebral bone quality score to predict cage subsidence following oblique lumbar interbody fusion

    No full text
    Abstract Background Current evidence suggests that the magnetic resonance imaging (MRI)-based vertebral bone quality (VBQ) score is a good parameter for evaluating bone quality. We aimed to assess whether the VBQ score can predict the occurrence of postoperative cage subsidence after oblique lumbar interbody fusion (OLIF) surgery. Methods Patients (n = 102) who had undergone single-level OLIF with a minimal follow-up for 1 year were reviewed in this study. Demographic and radiographic data of these patients were collected. Cage subsidence was defined as ≥ 2 mm of cage migration into the inferior endplate, superior endplate, or both. Further, the MRI-based VBQ score was measured on T1-weighted images. Moreover, univariable and multivariable binary logistic regression analyses were performed. Meanwhile, Pearson analysis was used to evaluate the correlation among the VBQ score, average lumbar dual-energy X-ray absorptiometry (DEXA) T-score, and degree of cage subsidence. Furthermore, ad-hoc analysis was used along with receiver operating characteristic curve analysis to assess the predictive ability of the VBQ score and average lumbar DEXA T-score. Results Of 102 participants, cage subsidence was observed in 39 (38.24%) patients. According to the univariable analysis, patients with subsidence had older age, higher antiosteoporotic drug use, larger disk height change, a more concave morphology of inferior and superior endplates, higher VBQ score, and lower average lumbar DEXA T-score compared to patients without subsidence. In the multivariable logistic regression analysis, a higher VBQ score was significantly associated with an increased risk of subsidence (OR = 23.158 ± 0.849, 95% CI 4.381–122.399, p < 0.001), and it was the only significant and independent predictor of subsidence after OLIF. Moreover, the VBQ score was moderately correlated with the average lumbar DEXA T-score (r = − 0.576, p < 0.001) and the amount of cage subsidence (r = 0.649, p < 0.001). Furthermore, this score significantly predicted cage subsidence with an accuracy of 83.9%. Conclusions The VBQ score can independently predict postoperative cage subsidence in patients undergoing OLIF surgery

    Vertebral bone quality score to predict cage subsidence following oblique lumbar interbody fusion

    No full text
    Abstract Background Current evidence suggests that the magnetic resonance imaging (MRI)-based vertebral bone quality (VBQ) score is a good parameter for evaluating bone quality. We aimed to assess whether the VBQ score can predict the occurrence of postoperative cage subsidence after oblique lumbar interbody fusion (OLIF) surgery. Methods Patients (n = 102) who had undergone single-level OLIF with a minimal follow-up for 1 year were reviewed in this study. Demographic and radiographic data of these patients were collected. Cage subsidence was defined as ≥ 2 mm of cage migration into the inferior endplate, superior endplate, or both. Further, the MRI-based VBQ score was measured on T1-weighted images. Moreover, univariable and multivariable binary logistic regression analyses were performed. Meanwhile, Pearson analysis was used to evaluate the correlation among the VBQ score, average lumbar dual-energy X-ray absorptiometry (DEXA) T-score, and degree of cage subsidence. Furthermore, ad-hoc analysis was used along with receiver operating characteristic curve analysis to assess the predictive ability of the VBQ score and average lumbar DEXA T-score. Results Of 102 participants, cage subsidence was observed in 39 (38.24%) patients. According to the univariable analysis, patients with subsidence had older age, higher antiosteoporotic drug use, larger disk height change, a more concave morphology of inferior and superior endplates, higher VBQ score, and lower average lumbar DEXA T-score compared to patients without subsidence. In the multivariable logistic regression analysis, a higher VBQ score was significantly associated with an increased risk of subsidence (OR = 23.158 ± 0.849, 95% CI 4.381–122.399, p &lt; 0.001), and it was the only significant and independent predictor of subsidence after OLIF. Moreover, the VBQ score was moderately correlated with the average lumbar DEXA T-score (r = − 0.576, p &lt; 0.001) and the amount of cage subsidence (r = 0.649, p &lt; 0.001). Furthermore, this score significantly predicted cage subsidence with an accuracy of 83.9%. Conclusions The VBQ score can independently predict postoperative cage subsidence in patients undergoing OLIF surgery. </jats:sec

    A Novel Entropy-Based Centrality Approach for Identifying Vital Nodes in Weighted Networks

    No full text
    Measuring centrality has recently attracted increasing attention, with algorithms ranging from those that simply calculate the number of immediate neighbors and the shortest paths to those that are complicated iterative refinement processes and objective dynamical approaches. Indeed, vital nodes identification allows us to understand the roles that different nodes play in the structure of a network. However, quantifying centrality in complex networks with various topological structures is not an easy task. In this paper, we introduce a novel definition of entropy-based centrality, which can be applicable to weighted directed networks. By design, the total power of a node is divided into two parts, including its local power and its indirect power. The local power can be obtained by integrating the structural entropy, which reveals the communication activity and popularity of each node, and the interaction frequency entropy, which indicates its accessibility. In addition, the process of influence propagation can be captured by the two-hop subnetworks, resulting in the indirect power. In order to evaluate the performance of the entropy-based centrality, we use four weighted real-world networks with various instance sizes, degree distributions, and densities. Correspondingly, these networks are adolescent health, Bible, United States (US) airports, and Hep-th, respectively. Extensive analytical results demonstrate that the entropy-based centrality outperforms degree centrality, betweenness centrality, closeness centrality, and the Eigenvector centrality

    One Earth&ndash;One Health to Combat Antimicrobial Resistance Having a Dual Mutation Pattern, Based on the Robust Self-Regulation and Perpetual Reconstruction of Ecosystems

    No full text
    Background/Objectives: Antimicrobial resistance (AMR) has emerged as a grave threat to human health, and a One Earth&ndash;One Health (OE-OH) concept was proposed for addressing this challenge in 2024. Here, this concept was systematically defined, clarified, and refined, for better understanding, interpreting related results, and taking some measures to combat the crisis. Methods: Using logical reasoning and deductive methods, a dual mutation pattern was put forward for microbial resistance, adhering to the principle of parsimony and integrating Lamarckian, Darwinian, and Niche construction theories, and the evolutionary origins of current AMR were schematically presented. Subsequently, its theoretical foundation, together with a fundamental mathematical model, was defined and clarified based on the robust self-regulation and perpetual reconstruction of ecosystems, and then the generation, dissemination, and elimination of AMR and antibiotic resistance genes (ARGs) were sorted out and elucidated from abiotic and biotic factors. Finally, learning from the approach of problem management, some crucial measures are suggested for the research and development, application, and management of antibiotics, emphasizing the key role of simulating and utilizing the self-regulation of ecosystems. Results: A dual mutation pattern of microbial resistance and the evolutionary origins of current AMR was put forward. The theoretical foundation of the OE-OH concept, together with a fundamental mathematical model, was presented. Some unique perspectives, such as the emergence of AMR and ARGs 3.5 billion years ago and their ubiquity across the globe prior to antibiotic use, were clarified. Moreover, some crucial measures are proposed for addressing AMR. Conclusions: It is essential to implement the OH Joint Plan of Action from the OE-OH perspective, strongly emphasizing the key role of simulating and utilizing the self-regulation of ecosystems on addressing AMR
    corecore