2,760 research outputs found

    Toward comparing experiment and theory for corroborative research on hingeless rotor stability in forward flight

    Get PDF
    For flap lag stability of isolated rotors, experimental and analytical investigations were conducted in hover and forward flight on the adequacy of a linear quasisteady aerodynamics theory with dynamic flow. Forward flight effects on lag regressing mode were emphasized. A soft inplane hingeless rotor with three blades was tested at advance ratios as high as 0.55 and at shaft angles as high as 20 deg. The 1.62 m model rotor was untrimmed with an essentially unrestricted tilt of the tip path plane. In combination with lag natural frequencies, collective pitch settings and flap lag coupling parameters, the data base comprises nearly 1200 test points (damping and frequency) in forward flight and 200 test points in hover. By computerized symbolic manipulation, a linear model was developed in substall to predict stability margins with mode identification. To help explain the correlation between theory and data it also predicted substall and stall regions of the rotor disk from equilibrium values. The correlation showed both the strengths and weaknesses of the theory in substall ((angle of attack) equal to or less than 12 deg)

    A review of dynamic inflow and its effect on experimental correlations

    Get PDF
    A review is given of the relationship between experimental data and the development of modern dynamic-inflow theory. Some of the most interesting data, first presented 10 years ago at the Dynamic Specialist's Meeting, is now reviewed in light of the newer theories. These pure blade-flapping data correlate very well with analyses that include the new dynamic inflow theory, thus verifying the theory. Experimental data are also presented for damping with coupled inplane and body motions. Although inclusion of dynamic inflow is often required to correlate this coupled data, the data cannot be used to verify any particular dynamic inflow theory due to the uncertainties in modeling the inplane degree of freedom. For verification, pure flapping is required. However, the coupled data do show that inflow is often important in such computations

    Computational aspects of helicopter trim analysis and damping levels from Floquet theory

    Get PDF
    Helicopter trim settings of periodic initial state and control inputs are investigated for convergence of Newton iteration in computing the settings sequentially and in parallel. The trim analysis uses a shooting method and a weak version of two temporal finite element methods with displacement formulation and with mixed formulation of displacements and momenta. These three methods broadly represent two main approaches of trim analysis: adaptation of initial-value and finite element boundary-value codes to periodic boundary conditions, particularly for unstable and marginally stable systems. In each method, both the sequential and in-parallel schemes are used and the resulting nonlinear algebraic equations are solved by damped Newton iteration with an optimally selected damping parameter. The impact of damped Newton iteration, including earlier-observed divergence problems in trim analysis, is demonstrated by the maximum condition number of the Jacobian matrices of the iterative scheme and by virtual elimination of divergence. The advantages of the in-parallel scheme over the conventional sequential scheme are also demonstrated

    An experimental and analytical investigation of isolated rotor flap-lag stability in forward flight

    Get PDF
    For flap-lag stability of isolated rotors, experimental and analytical investigations are conducted in hover and forward flight on the adequacy of a linear quasisteady aerodynamics theory with dynamic inflow. Forward flight effects on lag regressing mode are emphasized. A soft inplane hingeless rotor with three blades is tested at advance ratios as high as 0.55 and at shaft angles as high as 20 degrees. In combination with lag natural frequencies, collective pitch settings and flap-lag coupling parameters, the data base comprises nearly 1200 test points (damping and frequency) in forward flight and 200 test points in hover. By computerized symbolic manipulations, an analytic model is developed in substall to predict stability margins with mode identification. It also predicts substall and stall regions to help explain the correlation between theory and data

    Concepts for a theoretical and experimental study of lifting rotor random loads and vibrations, Phase 2

    Get PDF
    A comparison with NASA conducted simulator studies has shown that the approximate digital method for computing rotor blade flapping responses to random inputs, tentatively suggested in Phase I Report, gives with increasing rotor advance ratio the wrong trend. Consequently, three alternative methods of solution have been considered and are described: (1) an approximate method based on the functional relation between input and output double frequency spectra, (2) a numerical method based on the system responses to deterministic inputs and (3) a perturbation approach. Among these the perturbation method requires the least amount of computation and has been developed in two forms - the first form to obtain the response correlation function and the second for the time averaged spectra of flapping oscillations

    Studies on radiation pasteurisation of medium fatty fish 3. Storage properties of white pomfret (Stromateus cinereus) fillets

    Get PDF
    White pomfret fillets packed under aerobic conditions had a limited shelf life of 8 days as against 10 days for samples packed under vacuum and stored at 0-2°C. Irradiation and subsequent storage of the fillets under vacuum at 0-2°C exhibited shelf lives of 30, 50 and 60 days for radiation doses of 0.1, 0.3 and 0.5 Mrad respectively in contrast to aerobically packed fillets which showed only 20, 35 and 50 days of storage life for the same levels of radiation doses and developed yellow discolouration and rancid odours

    Simple Pendulum Revisited

    Full text link
    We describe a 8085 microprocessor interface developed to make reliable time period measurements. The time period of each oscillation of a simple pendulum was measured using this interface. The variation of the time period with increasing oscillation was studied for the simple harmonic motion (SHM) and for large angle initial displacements (non-SHM). The results underlines the importance of the precautions which the students are asked to take while performing the pendulum experiment.Comment: 17 pages with 10 figure

    Motion of falling object

    Full text link
    A simple setup was assembled to study the motion of an object while it falls. The setup was used to determine the instantaneous velocity, terminal velocity and acceleration due to gravity. Also, since the whole project was done within $20 it can easily be popularized.Comment: 11 pages, 4 figur
    corecore