493 research outputs found

    College student understanding of informed consent terminology

    Get PDF
    A good, understandable informed consent form (ICF) is key to ethical medical research, and the ICF is necessary according to United States federal regulation. Since they may be written in complex technical language, ICFs are often difficult for subjects to understand. The purpose of this research was to evaluate students\u27 understanding of terminology commonly used in the ICF. An online research survey was sent to active students of Eastern Michigan University (EMU) during the winter 2015 semester. Questions were asked to evaluate the students\u27 understanding of the correct meaning of the terms used in medical research. The majority of students understood common terminology used in informed consents, but they were confused about the meaning of the term Clinical Research/Trial and the location where the clinical studies were conducted. Therefore, investigators and Institutional Review Boards (IRBs) need to be aware of these potentially confusing items when writing an ICF

    Determination of mixed hydrate thermodynamics for reservoir modeling

    Get PDF
    Natural gas hydrates are likely to contain more carbon than in all other fossil fuel reserves combined worldwide. Most of the natural gas hydrate deposits contain CH4 along with other hydrocarbon gases like C2H 6, C3H8 and non-hydrocarbon gases like CO 2 and H2S. Thus, if CH4 stored in natural gas hydrates can be recovered, the hydrates would potentially become a clean energy resource for the next 10,000 years. The production of CH4 from natural gas hydrate reservoirs has been predicted by reservoir simulators that implement phase equilibria data to predict various production scenarios. Therefore, it is very important to predict accurately phase equilibria of mixed hydrates. In this work an empirical correlation of dissociation pressure with respect to temperature and gas phase composition for CH4-C 2H6 mixed hydrate system is developed by fitting to available experimental data. It is a simple method with limited accuracy. Statistical thermodynamics approach developed by van der Waals and Platteeuw in 1959 provides best approximation to predict the phase equilibrium data. They assumed that there are no lattice distortions due to the guest molecules, hence constant reference parameters are used for different guest molecules. Later, Hwang et al. by his molecular dynamics found that there are lattice distortions due to the guest molecules and Holder et al. proposed that the reference chemical potential difference Dm0w and reference enthalpy difference Dh0w varies with the guest molecule. In this work, a correlation of Dm0w and Dh0w with respect to guest molecular size is developed to estimate the values of Dm0w and Dh0w . The cell potential method developed by Anderson et al. is modified for variable reference parameters. The method is validated by reproducing the phase equilibria of simple hydrates and the structural transitions that are known to occur. Three-dimensional phase equilibria and structural transitions occurring in the mixed hydrates like CH4-C2H6, CH4-N2 and N2-CO2 are predicted accurately without fitting to experimental data. The phase equilibria of CH 4-CO2 and CH4-N2-CO 2 hydrates are predicted to assess the production of CH4 from the reservoirs by replacing CH4 in the hydrate by pure CO 2 and N2+CO2 mixture which serves dual purpose of CH4 recovery and CO2 sequestration

    Surface, subsurface and thermophysical characterization of silica-palmitic acid nanocapsules for thermal energy storage applications

    Get PDF
    Current limits in thermal energy storage capabilities utilized in concentrated solar power plants applications are a critical challenge towards meeting future sustainable energy demands. A key component in overcoming this challenge is through the enhancement of latent heats of fusion characteristics in the thermal energy storage medium, which can increase storage energy density while reducing operating costs. In this investigation, latent heats of fusion enhancement were proposed through the use of nanoencapsulated phase change materials (PCM). Synthesized silicon dioxide nanocapsule shells containing palmitic acid (PA) as the phase change material core with varying core-to-shell mass ratios (1:1, 1:2, 1:4, 1:6) are investigated for their shell structural stability, encapsulation ratio (R), encapsulation efficiency (E) and energy density storage during phase transformation of the PCM core. Differential scanning calorimetry has been used to determine the effect of the fixed volume nanocapsule shell on the melting temperature, latent heat of fusion, and heat capacity for the PA core. Dynamic light scattering technique is used to understand the size distribution of the nanocapsules. Surface, sub-surface, and microstructural characteristics of the nanocapsule are investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR)

    IN VITRO EVALUATION OF ANTIMICROBIAL ACTIVITY OF MICRO PROPAGATED CALLUS OF CURUULIGO ORCHIODES (BLACK MUSILLI) AGAR WELL DIFFUSION AND MINIMUM INHIBITORY CONCENTRATION (MIC)

    Get PDF
    Objective: In vitro investigated the potential of methanol extracts of micro-propagated C. orchiodes in the antimicrobial property against the three gram-negative bacteria, two gram-positive and one fungal filament.Methods: The micro propagated callus methanol extract was examined against Escherichia coli, Proteus vulgaris, Salmonella typhimurium, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus and Candida albicans. The zone of inhibitions are determined at 10 mg/ml concentration of methanol extracts of callus on agar well plate and MIC against tested microorganism.Results: The highest antibacterial activity recorded in Staphylococcus aureus Bacillus cereus and followed by Candida albicans. Antibacterial activity of leaf extracts of A. reticulata was also significant against the tested microorganisms Escherichia coli, Salmonella typhi, Proteus vulgaris, Pseudomonas aeruginosa compared to ciprofloxacin.Conclusion: Based on the above observations, these extracts were further evaluated for their effect on microorganisms causing infections like typhoid fever, urinary tract infections, septicemia, toxic shock syndrome, skin infection, nosocomial infection, arthritis and diarrhoea. The results also suggest that these plants serve a therapeutic purpose in the treatment bacterial infections

    The Synthesis of Imidazole Fatty Acid Conjugates as Inhibitors of Apoptosis

    Get PDF
    Ionizing radiation is known to initiate apoptosis in mammalian cells by causing the transformation of cytochrome c into a peroxidase, which results in the specific peroxidation of the mitochondrial phospholipid cardiolipin. Here we report the design and synthesis of 8 imidazole fatty acid derivatives that bind to the cyt c:CL complex and inhibit the peroxidase activity required for the initiation of apoptosis. We postulate that imidazole acts as a sixth ligand to the haem iron and stops the interaction with H2O2. Two mitochondrially directed analogues (3-hydroxypropyl)triphenylphosphonium esters) of 12-imidazole-stearic acid and 12-imidazole-oleic acid not only were demonstrated to be peroxidase inhibitors in vitro, but were also extraordinarily effective in protecting mice from lethal doses (9 Gy) of ionization radiation. We studied the structure activity relationship to a group of triphenyl phosphonium derivatives containing imidazole at different positions on the fatty acid chain, and observed that the C8-imidazole stearate analogue had marginally better activity than the others. But overall, the structure activity result were remarkable “flat” with all compounds prepared having rather similar inhibitory strength. We also synthesized carnitine mono and di-esters of 12-imidazole fatty acids but full biological data is not yet available for these compounds

    Performance Improvement Of Electric Driveline Using Modulation Techniques

    Get PDF
    Abstract This thesis work will study different modulation techniques and their effects on the system losses of a traction motor and inverter for automotive applications. The machine, inverter and total system losses are simulated and analyzed for Space Vector Pulse Width Modulation (SVPWM), Active Zero State Pulse Width Modulation (AZSPWM), Near State Pulse Width Modulation (NSPWM) and Discontinuous Pulse Width Modulation (DPWM) techniques across the torque-speed map at 10 and 15kHz switching frequencies. Motor losses are estimated using current fed simulations to a FEM model in JMAG. These current injections are generated using a custom closed loop coupled analysis, performed using a 2-D partial derivative model of a permanent magnet synchronous machine (PMSM), a 3-phase inverter circuit with speed, torque and current control and a custom modulator block in MATLAB/ Simulink. Inverter losses are on the other hand estimated using a numerical approach on MATLAB. The result of this study is an optimal modulation map where Hybrid DPWM techniques outperform SVPWM over a majority of the torque speed map, by a discernible margin for this studies model. This work, will also discuss the methodology and implementation of different DPWM techniques, along with their efficacy across different power factors, and the resultant reasoning and logic devised to develop a custom Hybrid DPWM technique optimized for efficiency. The variations of AZSVPWM, its logic and limitations, as well as that of NSPWM, with its loss maps and THD maps are also discussed and presented

    Generative adversarial deep learning in images using Nash equilibrium game theory

    Get PDF
    A generative adversarial learning (GAL) algorithm is presented to overcome the manipulations that take place in adversarial data and to result in a secured convolutional neural network (CNN). The main objective of the generative algorithm is to make some changes to initial data with positive and negative class labels in testing, hence the CNN results in misclassified data. An adversarial algorithm is used to manipulate the input data that represents the boundaries of learner’s decision-making process. The algorithm generates adversarial modifications to the test dataset using a multiplayer stochastic game approach, without learning how to manipulate the data during training. Then the manipulated data is passed through a CNN for evaluation. The multi-player game consists of an interaction between adversaries which generates manipulations and retrains the model by the learner. The Nash equilibrium game theory (NEGT) is applied to Canadian Institute for Advance Research (CIFAR) dataset. This was done to produce a secure CNN output that is more robust to adversarial data manipulations. The experimental results show that proposed NEGT-GAL achieved a grater mean value of 7.92 and takes less wall clock time of 25,243 sec. Therefore, the proposed NEGT-GAL outperforms the compared existing methods and achieves greater performance

    Reactome knowledgebase of human biological pathways and processes

    Get PDF
    Reactome (http://www.reactome.org) is an expert-authored, peer-reviewed knowledgebase of human reactions and pathways that functions as a data mining resource and electronic textbook. Its current release includes 2975 human proteins, 2907 reactions and 4455 literature citations. A new entity-level pathway viewer and improved search and data mining tools facilitate searching and visualizing pathway data and the analysis of user-supplied high-throughput data sets. Reactome has increased its utility to the model organism communities with improved orthology prediction methods allowing pathway inference for 22 species and through collaborations to create manually curated Reactome pathway datasets for species including Arabidopsis, Oryza sativa (rice), Drosophila and Gallus gallus (chicken). Reactome's data content and software can all be freely used and redistributed under open source terms

    Ferredoxin:NADP(H) Oxidoreductase Abundance and Location Influences Redox Poise and Stress Tolerance

    Get PDF
    In linear photosynthetic electron transport, ferredoxin:NADP(H) oxidoreductase (FNR) transfers electrons from ferredoxin (Fd) to NADP(+). Both NADPH and reduced Fd (Fd(red)) are required for reductive assimilation and light/dark activation/deactivation of enzymes. FNR is therefore a hub, connecting photosynthetic electron transport to chloroplast redox metabolism. A correlation between FNR content and tolerance to oxidative stress is well established, although the precise mechanism remains unclear. We investigated the impact of altered FNR content and localization on electron transport and superoxide radical evolution in isolated thylakoids, and probed resulting changes in redox homeostasis, expression of oxidative stress markers, and tolerance to high light in planta. Our data indicate that the ratio of Fd(red) to FNR is critical, with either too much or too little FNR potentially leading to increased superoxide production, and perception of oxidative stress at the level of gene transcription. In FNR overexpressing plants, which show more NADP(H) and glutathione pools, improved tolerance to high-light stress indicates that disturbance of chloroplast redox poise and increased free radical generation may help “prime” the plant and induce protective mechanisms. In fnr1 knock-outs, the NADP(H) and glutathione pools are more oxidized relative to the wild type, and the photoprotective effect is absent despite perception of oxidative stress at the level of gene transcription

    The Reactome pathway Knowledgebase

    Get PDF
    The Reactome Knowledgebase (www.reactome.org) provides molecular details of signal transduction, transport, DNA replication, metabolism and other cellular processes as an ordered network of molecular transformations-an extended version of a classic metabolic map, in a single consistent data model. Reactome functions both as an archive of biological processes and as a tool for discovering unexpected functional relationships in data such as gene expression pattern surveys or somatic mutation catalogues from tumour cells. Over the last two years we redeveloped major components of the Reactome web interface to improve usability, responsiveness and data visualization. A new pathway diagram viewer provides a faster, clearer interface and smooth zooming from the entire reaction network to the details of individual reactions. Tool performance for analysis of user datasets has been substantially improved, now generating detailed results for genome-wide expression datasets within seconds. The analysis module can now be accessed through a RESTFul interface, facilitating its inclusion in third party applications. A new overview module allows the visualization of analysis results on a genome-wide Reactome pathway hierarchy using a single screen page. The search interface now provides auto-completion as well as a faceted search to narrow result lists efficiently
    corecore