69 research outputs found
Scale invariance and critical gravitational collapse
We examine ways to write the Choptuik critical solution as the evolution of
scale invariant variables. It is shown that a system of scale invariant
variables proposed by one of the authors does not evolve periodically in the
Choptuik critical solution. We find a different system, based on maximal
slicing. This system does evolve periodically, and may generalize to the case
of axisymmetry or of no symmetry at all.Comment: 7 pages, 3 figures, Revtex, discussion modified to clarify
presentatio
Choptuik scaling in six dimensions
We perform numerical simulations of the critical gravitational collapse of a
spherically symmetric scalar field in 6 dimensions. The critical solution has
discrete self-similarity. We find the critical exponent \gamma and the
self-similarity period \Delta.Comment: 8 pages, 3 figures RevTe
Scaling of curvature in sub-critical gravitational collapse
We perform numerical simulations of the gravitational collapse of a
spherically symmetric scalar field. For those data that just barely do not form
black holes we find the maximum curvature at the position of the central
observer. We find a scaling relation between this maximum curvature and
distance from the critical solution. The scaling relation is analogous to that
found by Choptuik for black hole mass for those data that do collapse to form
black holes. We also find a periodic wiggle in the scaling exponent.Comment: Revtex, 2 figures, Discussion modified, to appear in Phys. Rev.
Critical collapse of a massive vector field
We perform numerical simulations of the critical gravitational collapse of a
massive vector field. The result is that there are two critical solutions. One
is equivalent to the Choptuik critical solution for a massless scalar field.
The other is periodic.Comment: 7 pages, 4 figure
Critical Collapse of the Massless Scalar Field in Axisymmetry
We present results from a numerical study of critical gravitational collapse
of axisymmetric distributions of massless scalar field energy. We find
threshold behavior that can be described by the spherically symmetric critical
solution with axisymmetric perturbations. However, we see indications of a
growing, non-spherical mode about the spherically symmetric critical solution.
The effect of this instability is that the small asymmetry present in what
would otherwise be a spherically symmetric self-similar solution grows. This
growth continues until a bifurcation occurs and two distinct regions form on
the axis, each resembling the spherically symmetric self-similar solution. The
existence of a non-spherical unstable mode is in conflict with previous
perturbative results, and we therefore discuss whether such a mode exists in
the continuum limit, or whether we are instead seeing a marginally stable mode
that is rendered unstable by numerical approximation.Comment: 11 pages, 8 figure
Critical Exponents and Stability at the Black Hole Threshold for a Complex Scalar Field
This paper continues a study on Choptuik scaling in gravitational collapse of
a complex scalar field at the threshold for black hole formation. We perform a
linear perturbation analysis of the previously derived complex critical
solution, and calculate the critical exponent for black hole mass, . We also show that this critical solution is unstable via a
growing oscillatory mode.Comment: 15 pages of latex/revtex; added details of numerics, in press in Phys
Rev D; 1 figure included, or available by anonymous ftp to
ftp://ftp.itp.ucsb.edu/figures/nsf-itp-95-58.ep
An exact solution for 2+1 dimensional critical collapse
We find an exact solution in closed form for the critical collapse of a
scalar field with cosmological constant in 2+1 dimensions. This solution agrees
with the numerical simulation done by Pretorius and Choptuik of this system.Comment: 5 pages, 5 figures, Revtex. New comparison of analytic and numerical
solutions beyond the past light cone of the singularity added. Two new
references added. Error in equation (21) correcte
Scalar field collapse in three-dimensional AdS spacetime
We describe results of a numerical calculation of circularly symmetric scalar
field collapse in three spacetime dimensions with negative cosmological
constant. The procedure uses a double null formulation of the Einstein-scalar
equations. We see evidence of black hole formation on first implosion of a
scalar pulse if the initial pulse amplitude is greater than a critical
value . Sufficiently near criticality the apparent horizon radius
grows with pulse amplitude according to the formula .Comment: 10 pages, 1 figure; references added, to appear in CQG(L
The naked singularity in the global structure of critical collapse spacetimes
We examine the global structure of scalar field critical collapse spacetimes
using a characteristic double-null code. It can integrate past the horizon
without any coordinate problems, due to the careful choice of constraint
equations used in the evolution. The limiting sequence of sub- and
supercritical spacetimes presents an apparent paradox in the expected Penrose
diagrams, which we address in this paper. We argue that the limiting spacetime
converges pointwise to a unique limit for all r>0, but not uniformly. The r=0
line is different in the two limits. We interpret that the two different
Penrose diagrams differ by a discontinuous gauge transformation. We conclude
that the limiting spacetime possesses a singular event, with a future removable
naked singularity.Comment: RevTeX 4; 6 pages, 7 figure
Dimensional Dependence of Black Hole Formation in Self-Similar Collapse of Scalar Field
We study classical and quantum self-similar collapses of a massless scalar
field in higher dimensions, and examine how the increase in the number of
dimensions affects gravitational collapse and black hole formation. Higher
dimensions seem to favor formation of black hole rather than other final
states, in that the initial data space for black hole formation enlarges as
dimension increases. On the other hand, the quantum gravity effect on the
collapse lessens as dimension increases. We also discuss the gravitational
collapse in a brane world with large but compact extra dimensions.Comment: Improved a few arguments and added a figur
- …
