1,150 research outputs found
Regulation of aldosterone secretion by Ca(v)1.3
This work is supported by NIHR Senior Investigator grant NF-SI-0512-10052 awarded to M.J.B.; the Austin Doyle Award (Servier Australia) and the Tunku Abdul Rahman Centenary Fund (St Catharine's College, Cambridge, UK) awarded to E.A.B.A.; Gates Cambridge Scholarship awarded to C.B.X.; L.H.S., S.G. and C.M. are supported by the British Heart Foundation PhD studentship FS/11/35/28871, FS/14/75/31134 and FS/14/12/30540 respectively; J.Z. was supported by the Cambridge Overseas Trust Scholarship and the Sun Hung Kai Properties-Kwoks’ Foundation; A.E.D.T. is funded by the Agency for Science, Technology & Research (A*STAR) Singapore and Wellcome Trust Award 085686/Z/08/A; LHS, JZ and EABA were further supported by the NIHR Cambridge Biomedical Research Centre; the Human Research Tissue Bank is supported by the NIHR Cambridge Biomedical Research Centre. The Cav1.3 constructs were kindly gifted by Dr. Joerg Striessnig and Dr Petronel Tuluc
Chronic escitalopram treatment attenuated the accelerated rapid eye movement sleep transitions after selective rapid eye movement sleep deprivation: a model-based analysis using Markov chains
BackgroundShortened rapid eye movement (REM) sleep latency and increased REM sleep amount are presumed biological markers of depression. These sleep alterations are also observable in several animal models of depression as well as during the rebound sleep after selective REM sleep deprivation (RD). Furthermore, REM sleep fragmentation is typically associated with stress procedures and anxiety. The selective serotonin reuptake inhibitor (SSRI) antidepressants reduce REM sleep time and increase REM latency after acute dosing in normal condition and even during REM rebound following RD. However, their therapeutic outcome evolves only after weeks of treatment, and the effects of chronic treatment in REM-deprived animals have not been studied yet.ResultsChronic escitalopram- (10 mg/kg/day, osmotic minipump for 24 days) or vehicle-treated rats were subjected to a 3-day-long RD on day 21 using the flower pot procedure or kept in home cage. On day 24, fronto-parietal electroencephalogram, electromyogram and motility were recorded in the first 2 h of the passive phase. The observed sleep patterns were characterized applying standard sleep metrics, by modelling the transitions between sleep phases using Markov chains and by spectral analysis.Based on Markov chain analysis, chronic escitalopram treatment attenuated the REM sleep fragmentation [accelerated transition rates between REM and non-REM (NREM) stages, decreased REM sleep residence time between two transitions] during the rebound sleep. Additionally, the antidepressant avoided the frequent awakenings during the first 30 min of recovery period. The spectral analysis showed that the SSRI prevented the RD-caused elevation in theta (5 inverted question mark9 Hz) power during slow-wave sleep. Conversely, based on the aggregate sleep metrics, escitalopram had only moderate effects and it did not significantly attenuate the REM rebound after RD.ConclusionIn conclusion, chronic SSRI treatment is capable of reducing several effects on sleep which might be the consequence of the sub-chronic stress caused by the flower pot method. These data might support the antidepressant activity of SSRIs, and may allude that investigating the rebound period following the flower pot protocol could be useful to detect antidepressant drug response. Markov analysis is a suitable method to study the sleep pattern
Solving Nonlinear Parabolic Equations by a Strongly Implicit Finite-Difference Scheme
We discuss the numerical solution of nonlinear parabolic partial differential
equations, exhibiting finite speed of propagation, via a strongly implicit
finite-difference scheme with formal truncation error . Our application of interest is the spreading of
viscous gravity currents in the study of which these type of differential
equations arise. Viscous gravity currents are low Reynolds number (viscous
forces dominate inertial forces) flow phenomena in which a dense, viscous fluid
displaces a lighter (usually immiscible) fluid. The fluids may be confined by
the sidewalls of a channel or propagate in an unconfined two-dimensional (or
axisymmetric three-dimensional) geometry. Under the lubrication approximation,
the mathematical description of the spreading of these fluids reduces to
solving the so-called thin-film equation for the current's shape . To
solve such nonlinear parabolic equations we propose a finite-difference scheme
based on the Crank--Nicolson idea. We implement the scheme for problems
involving a single spatial coordinate (i.e., two-dimensional, axisymmetric or
spherically-symmetric three-dimensional currents) on an equispaced but
staggered grid. We benchmark the scheme against analytical solutions and
highlight its strong numerical stability by specifically considering the
spreading of non-Newtonian power-law fluids in a variable-width confined
channel-like geometry (a "Hele-Shaw cell") subject to a given mass
conservation/balance constraint. We show that this constraint can be
implemented by re-expressing it as nonlinear flux boundary conditions on the
domain's endpoints. Then, we show numerically that the scheme achieves its full
second-order accuracy in space and time. We also highlight through numerical
simulations how the proposed scheme accurately respects the mass
conservation/balance constraint.Comment: 36 pages, 9 figures, Springer book class; v2 includes improvements
and corrections; to appear as a contribution in "Applied Wave Mathematics II
Relationship between cardiac deformation parameters measured by cardiovascular magnetic resonance and aerobic fitness in endurance athletes
Background: Athletic training leads to remodelling of both left and right ventricles with increased myocardial mass and cavity dilatation. Whether changes in cardiac strain parameters occur in response to training is less well established. In this study we investigated the relationship in trained athletes between cardiovascular magnetic resonance (CMR) derived strain parameters of cardiac function and fitness. Methods: 35 endurance athletes and 35 age and sex matched controls underwent CMR at 3.0T including cine imaging in multiple planes and tissue tagging by spatial modulation of magnetization (SPAMM). CMR data were analysed quantitatively reporting circumferential strain and torsion from tagged images and left and right ventricular longitudinal strain from feature tracking of cine images. Athletes performed a maximal ramp-incremental exercise test to determine the lactate threshold (LT) and maximal oxygen uptake (V̇O2max). Results: LV circumferential strain at all levels, LV twist and torsion, LV late diastolic longitudinal strain rate, RV peak longitudinal strain and RV early and late diastolic longitudinal strain rate were all lower in athletes than controls. On multivariable linear regression only LV torsion (beta=-0.37, P=0.03) had a significant association with LT. Only RV longitudinal late diastolic strain rate (beta=-0.35, P=0.03) had a significant association with V̇O2max. Conclusions: This cohort of endurance athletes had lower LV circumferential strain, LV torsion and biventricular diastolic strain rates than controls. Increased LT, which is a major determinant of performance in endurance athletes, was associated with decreased LV torsion. Further work is needed to understand the mechanisms by which this occurs
Cardiac T1 Mapping and Extracellular Volume (ECV) in clinical practice: a comprehensive review.
Cardiovascular Magnetic Resonance is increasingly used to differentiate the aetiology of cardiomyopathies. Late Gadolinium Enhancement (LGE) is the reference standard for non-invasive imaging of myocardial scar and focal fibrosis and is valuable in the differential diagnosis of ischaemic versus non-ischaemic cardiomyopathy. Diffuse fibrosis may go undetected on LGE imaging. Tissue characterisation with parametric mapping methods has the potential to detect and quantify both focal and diffuse alterations in myocardial structure not assessable by LGE. Native and post-contrast T1 mapping in particular has shown promise as a novel biomarker to support diagnostic, therapeutic and prognostic decision making in ischaemic and non-ischaemic cardiomyopathies as well as in patients with acute chest pain syndromes. Furthermore, changes in the myocardium over time may be assessed longitudinally with this non-invasive tissue characterisation method
PathogenFinder - Distinguishing Friend from Foe Using Bacterial Whole Genome Sequence Data.
Although the majority of bacteria are harmless or even beneficial to their host, others are highly virulent and can cause serious diseases, and even death. Due to the constantly decreasing cost of high-throughput sequencing there are now many completely sequenced genomes available from both human pathogenic and innocuous strains. The data can be used to identify gene families that correlate with pathogenicity and to develop tools to predict the pathogenicity of newly sequenced strains, investigations that previously were mainly done by means of more expensive and time consuming experimental approaches. We describe PathogenFinde
Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: Methods of a decision-maker-researcher partnership systematic review
<p>Abstract</p> <p>Background</p> <p>Computerized clinical decision support systems are information technology-based systems designed to improve clinical decision-making. As with any healthcare intervention with claims to improve process of care or patient outcomes, decision support systems should be rigorously evaluated before widespread dissemination into clinical practice. Engaging healthcare providers and managers in the review process may facilitate knowledge translation and uptake. The objective of this research was to form a partnership of healthcare providers, managers, and researchers to review randomized controlled trials assessing the effects of computerized decision support for six clinical application areas: primary preventive care, therapeutic drug monitoring and dosing, drug prescribing, chronic disease management, diagnostic test ordering and interpretation, and acute care management; and to identify study characteristics that predict benefit.</p> <p>Methods</p> <p>The review was undertaken by the Health Information Research Unit, McMaster University, in partnership with Hamilton Health Sciences, the Hamilton, Niagara, Haldimand, and Brant Local Health Integration Network, and pertinent healthcare service teams. Following agreement on information needs and interests with decision-makers, our earlier systematic review was updated by searching Medline, EMBASE, EBM Review databases, and Inspec, and reviewing reference lists through 6 January 2010. Data extraction items were expanded according to input from decision-makers. Authors of primary studies were contacted to confirm data and to provide additional information. Eligible trials were organized according to clinical area of application. We included randomized controlled trials that evaluated the effect on practitioner performance or patient outcomes of patient care provided with a computerized clinical decision support system compared with patient care without such a system.</p> <p>Results</p> <p>Data will be summarized using descriptive summary measures, including proportions for categorical variables and means for continuous variables. Univariable and multivariable logistic regression models will be used to investigate associations between outcomes of interest and study specific covariates. When reporting results from individual studies, we will cite the measures of association and p-values reported in the studies. If appropriate for groups of studies with similar features, we will conduct meta-analyses.</p> <p>Conclusion</p> <p>A decision-maker-researcher partnership provides a model for systematic reviews that may foster knowledge translation and uptake.</p
Decoding the regulatory network of early blood development from single-cell gene expression measurements.
Reconstruction of the molecular pathways controlling organ development has been hampered by a lack of methods to resolve embryonic progenitor cells. Here we describe a strategy to address this problem that combines gene expression profiling of large numbers of single cells with data analysis based on diffusion maps for dimensionality reduction and network synthesis from state transition graphs. Applying the approach to hematopoietic development in the mouse embryo, we map the progression of mesoderm toward blood using single-cell gene expression analysis of 3,934 cells with blood-forming potential captured at four time points between E7.0 and E8.5. Transitions between individual cellular states are then used as input to develop a single-cell network synthesis toolkit to generate a computationally executable transcriptional regulatory network model of blood development. Several model predictions concerning the roles of Sox and Hox factors are validated experimentally. Our results demonstrate that single-cell analysis of a developing organ coupled with computational approaches can reveal the transcriptional programs that underpin organogenesis.We thank J. Downing (St. Jude Children's Research Hospital, Memphis, TN, USA) for the Runx1-ires-GFP mouse. Research in the authors' laboratory is supported by the Medical Research Council, Biotechnology and Biological Sciences Research Council, Leukaemia and Lymphoma Research, the Leukemia and Lymphoma Society, Microsoft Research and core support grants by the Wellcome Trust to the Cambridge Institute for Medical Research and Wellcome Trust - MRC Cambridge Stem Cell Institute. V.M. is supported by a Medical Research Council Studentship and Centenary Award and S.W. by a Microsoft Research PhD Scholarship.This is the accepted manuscript for a paper published in Nature Biotechnology 33, 269–276 (2015) doi:10.1038/nbt.315
Search for Dark Matter and Supersymmetry with a Compressed Mass Spectrum in the Vector Boson Fusion Topology in Proton-Proton Collisions at root s=8 TeV
Peer reviewe
Impact of phosphorus application on drought resistant responses of Eucalyptus grandis seedlings
Eucalyptus grandis is the most widely planted tree species worldwide and can face severe drought during the initial months after planting because the root system is developing. A complete randomized design was used to study the effects of two water regimes (well-watered and water-stressed) and phosphorus (P) applications (with and without P) on the morphological and physio-biochemical responses of E. grandis. Drought had negative effects on the growth and metabolism of E. grandis, as indicated by changes in morphological traits, decreased net photosynthetic rates (Pn), pigment concentrations, leaf relative water contents (LRWCs), nitrogenous compounds, over-production of reactive oxygen species (ROS) and higher lipid peroxidation. However, E. grandis showed effective drought tolerance strategies, such as reduced leaf area and transpiration rate (E), higher accumulation of soluble sugars and proline and a strong antioxidative enzyme system. P fertilization had positive effects on well-watered seedlings due to improved growth and photosynthesis, which indicated the high P requirements during the initial E. grandis growth stage. In drought-stressed seedlings, P application had no effects on the morphological traits, but it significantly improved the LRWC, Pn, quantum efficiency of photosystem II (Fv/Fm), chlorophyll pigments, nitrogenous compounds and reduced lipid peroxidation. P fertilization improved E. grandis seedling growth under well-watered conditions but also ameliorated some leaf physiological traits under drought conditions. The effects of P fertilization are mainly due to the enhancement of plant N nutrition. Therefore, P can be used as a fertilizer to improve growth and production in the face of future climate change.Fil: Tariq, Akash. Chinese Academy of Sciences; República de China. University of Chinese Academy of Sciences; ChinaFil: Pan, Kaiwen. Chinese Academy of Sciences; República de ChinaFil: Olatunji, Olusanya A. Chinese Academy of Sciences; República de China. University of Chinese Academy of Sciences; ChinaFil: Graciano, Corina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; ArgentinaFil: Li, Zilong. Chinese Academy of Sciences; República de China. University of Chinese Academy of Sciences; ChinaFil: Li, Ningning. Southwest University; ChinaFil: Song, Dagang. Chinese Academy of Sciences; República de China. University of Chinese Academy of Sciences; ChinaFil: Sun, Feng. Chinese Academy of Sciences; República de China. University of Chinese Academy of Sciences; ChinaFil: Wu, Xiaogang. Chinese Academy of Sciences; República de ChinaFil: Dakhil, Mohammed A.. Chinese Academy of Sciences; República de China. University of Chinese Academy of Sciences; China. Helwan University; EgiptoFil: Sun, Xiaoming. Chinese Academy of Sciences; República de ChinaFil: Zhang, Lin. Chinese Academy of Sciences; República de Chin
- …
