6,440 research outputs found

    Encefalitis chagásica pseudotumoral en pacientes con SIDA: presentación atípica en uno de ellos e historia de la enfermedad en una pequeña serie de casos

    Get PDF
    Chagas' disease is an intracellular parasitic infection owed to a protozoarium, the Trypanosoma cruzi1, affecting a large population in Latinamerica. Within the region 15 to 16 million people are infected2. The worldwide pandemia, due to the infection of the HIV 1 virus, also affects Latinamerican countries. The number of patients with this condition in Central and South Americas amounts to 1.6 million persons3,4. Therefore, both illnesses overlap in a broad geographical area and may coincide in the same patient. The HIV infection, which causes the AIDS syndrome, impairs the immunological system and predisposes to the appearance of opportunistic infections, which may have been hosted unnoticed by the patient until then. Therefore, Chagas' disease, which is a dormant infection in most patients5, may reactivate if the immunological surveillance wanes off as the consequence of the viral insult. Along the last years we6,7 and others8-10 found patients afflicted by AIDS, who developed brain lesions yielded by the Trypanosoma cruzi. The present communication describes three further patients with this condition; one of them is unique because his clinical, radiological and immunological findings differ from those previously reported in the literature.Fil: Sica, Roberto E. P.. Universidad de Buenos Aires. Facultad de Medicina; Argentina. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos "Ramos Mejía"; ArgentinaFil: Gargiulo Monachelli, Gisella Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos "Ramos Mejía"; ArgentinaFil: Papayanis, Cristina. Universidad de Buenos Aires. Facultad de Medicina; Argentina. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos "Ramos Mejía"; Argentin

    Electronic transport within a quasi two-dimensional model for rubrene single-crystal field effect transistors

    Full text link
    Spectral and transport properties of the quasi two-dimensional adiabatic Su-Schrieffer-Heeger model are studied adjusting the parameters in order to model rubrene single-crystal field effect transistors with small but finite density of injected charge carriers. We show that, with increasing temperature TT, the chemical potential moves into the tail of the density of states corresponding to localized states, but this is not enough to drive the system into an insulating state. The mobility along different crystallographic directions is calculated including vertex corrections which give rise to a transport lifetime one order of magnitude smaller than spectral lifetime of the states involved in the transport mechanism. With increasing temperature, the transport properties reach the Ioffe-Regel limit which is ascribed to less and less appreciable contribution of itinerant states to the conduction process. The model provides features of the mobility in close agreement with experiments: right order of magnitude, scaling as a power law TγT^{-\gamma}, with γ\gamma close or larger than two, and correct anisotropy ratio between different in-plane directions. Due to a realistic high dimensional model, the results are not biased by uncontrolled approximations.Comment: 10 pages, 9 figures, Submitte

    Chemo-Archaeological Downsizing in a Hierarchical Universe: Impact of a Top Heavy IGIMF

    Get PDF
    We make use of a semi-analytical model of galaxy formation to investigate the origin of the observed correlation between [a/Fe] abundance ratios and stellar mass in elliptical galaxies. We implement a new galaxy-wide stellar initial mass function (Top Heavy Integrated Galaxy Initial Mass Function, TH-IGIMF) in the semi-analytic model SAG and evaluate its impact on the chemical evolution of galaxies. The SFR-dependence of the slope of the TH-IGIMF is found to be key to reproducing the correct [a/Fe]-stellar mass relation. Massive galaxies reach higher [a/Fe] abundance ratios because they are characterized by more top-heavy IMFs as a result of their higher SFR. As a consequence of our analysis, the value of the minimum embedded star cluster mass and of the slope of the embedded cluster mass function, which are free parameters involved in the TH-IGIMF theory, are found to be as low as 5 solar masses and 2, respectively. A mild downsizing trend is present for galaxies generated assuming either a universal IMF or a variable TH-IGIMF. We find that, regardless of galaxy mass, older galaxies (with formation redshifts > 2) are formed in shorter time-scales (< 2 Gyr), thus achieving larger [a/Fe] values. Hence, the time-scale of galaxy formation alone cannot explain the slope of the [a/Fe]-galaxy mass relation, but is responsible for the big dispersion of [a/Fe] abundance ratios at fixed stellar mass.We further test the hyphothesis of a TH-IGIMF in elliptical galaxies by looking into mass-to-light ratios, and luminosity functions. Models with a TH-IGIMF are also favoured by these constraints. In particular, mass-to-light ratios agree with observed values for massive galaxies while being overpredicted for less massive ones; this overprediction is present regardless of the IMF considered.Comment: 24 pages, 15 figures, 2 tables. (Comments most welcome). Summited to MNRA

    Scaling relations of cluster elliptical galaxies at z~1.3. Distinguishing luminosity and structural evolution

    Full text link
    [Abridged] We studied the size-surface brightness and the size-mass relations of a sample of 16 cluster elliptical galaxies in the mass range 10^{10}-2x10^{11} M_sun which were morphologically selected in the cluster RDCS J0848+4453 at z=1.27. Our aim is to assess whether they have completed their mass growth at their redshift or significant mass and/or size growth can or must take place until z=0 in order to understand whether elliptical galaxies of clusters follow the observed size evolution of passive galaxies. To compare our data with the local universe we considered the Kormendy relation derived from the early-type galaxies of a local Coma Cluster reference sample and the WINGS survey sample. The comparison with the local Kormendy relation shows that the luminosity evolution due to the aging of the stellar content already assembled at z=1.27 brings them on the local relation. Moreover, this stellar content places them on the size-mass relation of the local cluster ellipticals. These results imply that for a given mass, the stellar mass at z~1.3 is distributed within these ellipticals according to the same stellar mass profile of local ellipticals. We find that a pure size evolution, even mild, is ruled out for our galaxies since it would lead them away from both the Kormendy and the size-mass relation. If an evolution of the effective radius takes place, this must be compensated by an increase in the luminosity, hence of the stellar mass of the galaxies, to keep them on the local relations. We show that to follow the Kormendy relation, the stellar mass must increase as the effective radius. However, this mass growth is not sufficient to keep the galaxies on the size-mass relation for the same variation in effective radius. Thus, if we want to preserve the Kormendy relation, we fail to satisfy the size-mass relation and vice versa.Comment: Accepted for publication in A&A, updated to match final journal versio

    Calibration of semi-analytic models of galaxy formation using Particle Swarm Optimization

    Get PDF
    We present a fast and accurate method to select an optimal set of parameters in semi-analytic models of galaxy formation and evolution (SAMs). Our approach compares the results of a model against a set of observables applying a stochastic technique called Particle Swarm Optimization (PSO), a self-learning algorithm for localizing regions of maximum likelihood in multidimensional spaces that outperforms traditional sampling methods in terms of computational cost. We apply the PSO technique to the SAG semi-analytic model combined with merger trees extracted from a standard Λ\LambdaCDM N-body simulation. The calibration is performed using a combination of observed galaxy properties as constraints, including the local stellar mass function and the black hole to bulge mass relation. We test the ability of the PSO algorithm to find the best set of free parameters of the model by comparing the results with those obtained using a MCMC exploration. Both methods find the same maximum likelihood region, however the PSO method requires one order of magnitude less evaluations. This new approach allows a fast estimation of the best-fitting parameter set in multidimensional spaces, providing a practical tool to test the consequences of including other astrophysical processes in SAMs.Comment: 11 pages, 4 figures, 1 table. Accepted for publication in ApJ. Comments are welcom

    Tits-Satake projections of homogeneous special geometries

    Get PDF
    We organize the homogeneous special geometries, describing as well the couplings of D=6, 5, 4 and 3 supergravities with 8 supercharges, in a small number of universality classes. This relates manifolds on which similar types of dynamical solutions can exist. The mathematical ingredient is the Tits-Satake projection of real simple Lie algebras, which we extend to all solvable Lie algebras occurring in these homogeneous special geometries. Apart from some exotic cases all the other, 'very special', homogeneous manifolds can be grouped in seven universality classes. The organization of these classes, which capture the essential features of their basic dynamics, commutes with the r- and c-map. Different members are distinguished by different choices of the paint group, a notion discovered in the context of cosmic billiard dynamics of non maximally supersymmetric supergravities. We comment on the usefulness of this organization in universality classes both in relation with cosmic billiard dynamics and with configurations of branes and orbifolds defining special geometry backgrounds.Comment: 65 pages, LaTeX; v2: added reference; v3: small corrections, section 3.3 modifie

    Cerebral embolic lesions detected with diffusion-weighted magnetic resonance imaging following carotid artery stenting: a meta-analysis of 8 studies comparing filter cerebral protection and proximal balloon occlusion.

    Get PDF
    OBJECTIVES: The aim of this meta-analysis was to evaluate and compare the efficacy of the 2 different neuroprotection systems in preventing embolization during carotid artery stenting (CAS), as detected by diffusion-weighted magnetic resonance imaging (DW-MRI). BACKGROUND: Data from randomized and nonrandomized studies comparing both types of embolic protection devices revealed contrasting evidence about their efficacy in neuroprotection, as assessed by the incidence of new ischemic lesions detected by DW-MRI. METHODS: Eight studies, enrolling 357 patients, were included in the meta-analysis. Our study analyzed the incidence of new ischemic lesions/patient, comparing filter cerebral protection and proximal balloon occlusion. RESULTS: Following CAS, the incidence of new ischemic lesions/patient detected by DW-MRI was significantly lower in the proximal balloon occlusion group (effect size [ES]: -0.43; 95% confidence interval [CI]: -0.84 to -0.02, I(2) = 70.08, Q = 23.40). Furthermore, following CAS, the incidence of lesions at the contralateral site was significantly lower in the proximal protection group (ES: -0.50; 95% CI: -0.72 to -0.27, I(2) = 0.00, Q = 3.80). CONCLUSIONS: Our meta-analysis supports the concept that the use of proximal balloon occlusion compared with filter cerebral protection is associated with a reduction of the amount of CAS-related brain embolization. The data should be confirmed by a randomized clinical tria

    Social Cohesion, Structural Holes, and a Tale of Two Measures

    Get PDF
    EMBARGOED - author can archive pre-print or post-print on any open access repository after 12 months from publication. Publication date is May 2013 so embargoed until May 2014.This is an author’s accepted manuscript (deposited at arXiv arXiv:1211.0719v2 [physics.soc-ph] ), which was subsequently published in Journal of Statistical Physics May 2013, Volume 151, Issue 3-4, pp 745-764. The final publication is available at link.springer.com http://link.springer.com/article/10.1007/s10955-013-0722-

    Smart Cities: Towards a New Citizenship Regime? A Discourse Analysis of the British Smart City Standard

    Get PDF
    Growing practice interest in smart cities has led to calls for a less technology-oriented and more citizen-centric approach. In response, this articles investigates the citizenship mode promulgated by the smart city standard of the British Standards Institution. The analysis uses the concept of citizenship regime and a mixture of quantitative and qualitative methods to discern key discursive frames defining the smart city and the particular citizenship dimensions brought into play. The results confirm an explicit citizenship rationale guiding the smart city (standard), although this displays some substantive shortcomings and contradictions. The article concludes with recommendations for both further theory and practice development

    N=4 Supergravity Lagrangian for Type IIB Orientifold on T^6/Z_2 in Presence of Fluxes and D3-Branes

    Full text link
    We derive the Lagrangian and the transformation laws of N=4 gauged supergravity coupled to matter multiplets whose sigma-model of the scalars is SU(1,1)/U(1)x SO(6,6+n)/SO(6)xSO(6+n) and which corresponds to the effective Lagrangian of the Type IIB string compactified on the T^6/Z_2 orientifold with fluxes turned on and in presence of n D3-branes. The gauge group is T^12 x G where G is the gauge group on the brane and T^12 is the gauge group on the bulk corresponding to the gauged translations of the R-R scalars coming from the R-R four--form. The N=4 bulk sector of this theory can be obtained as a truncation of the Scherk-Schwarz spontaneously broken N=8 supergravity. Consequently the full bulk spectrum satisfies quadratic and quartic mass sum rules, identical to those encountered in Scherk-Schwarz reduction gauging a flat group. This theory gives rise to a no scale supergravity extended with partial super-Higgs mechanism.Comment: 49 pages, LaTex, 2 figures. Misprints corrected, more comments adde
    corecore