327 research outputs found

    Formation Studies on the Nonaqueous Synthesis of Metal Oxide Nanoparticles in a 1.5 L Reactor System

    Get PDF
    In the last years, the nonaqueous synthesis has been demonstrated as a highly versatile method for the simple synthesis of highly crystalline metal oxide nanoparticles and nanomaterials. Thereby, we have presented the synthesis of a multitude of different metal oxides (e.g., TiO2, ZrO2, BaTiO3, Fe3O4). The mechanisms of particle formation as well as the influence of process parameters on the particle properties however remain largely unknown so far, as the molecular mechanisms are rather complex. In this paper, we show that the synthesis of metal oxide nanoparticles is feasible also on a multi-gram reactor scale on the example of anatase TiO2 nanoparticles. Using a reactor system equipped with a sampling system for with-drawal of samples at different stages of the reaction, the kinetics of particle formation could be determined and compared to the formation of organic side products and water. Additionally, insights into the influence of different process parameters on the particle properties are shown and can be utilized to tailor size and morphology of the product nanoparticles. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3489

    Fractal growth of ZrO2 nanoparticles induced by synthesis conditions

    Get PDF
    Strong changes in morphology and phase composition of zirconia nanoparticles can be induced by altering the growth conditions during nanoparticle synthesis. Here, we demonstrate that fractal ZrO2 nanocrystals showing high specific surface area can be obtained in the nonaqueous synthesis by variation of temperature and precursor concentration. The growth process was studied in detail revealing a size increase from 2.7 to 7 nm as well as a change in the polymorphic composition from tetragonal to monoclinic zirconia. TEM measurements of samples withdrawn over the course of the synthesis showed that particles grow from roundish to dendritic shapes during the phase transformation. In contrast to the common assumption that the phase transition is controlled by thermodynamics, our data shows that the transition is rather governed by kinetics. © The Royal Society of Chemistry 2016

    All-inorganic core-shell silica-titania mesoporous colloidal nanoparticles showing orthogonal functionality

    Get PDF
    Colloidal mesoporous silica (CMS) nanoparticles with a thin titania-enriched outer shell showing a spatially resolved functionality were synthesized by a delayed co-condensation approach. The titaniashell can serve as a selective nucleation site for the growth of nanocrystalline anatase clusters. These fully inorganic pure silica-core titania-enriched shell mesoporous nanoparticles show orthogonal functionality, demonstrated through the selective adsorption of a carboxylate-containing ruthenium N3-dye. UV-Vis and fluorescence spectroscopy indicate the strong interaction of the N3-dye with the titania-phase at the outer shell of the CMS nanoparticles. In particular, this interaction and thus the selective functionalization are greatly enhanced when anatase nanocrystallites are nucleated at the titania-enriched shell surface

    In-depth mesocrystal formation analysis of microwave-assisted synthesis of LiMnPO4nanostructures in organic solution

    Get PDF
    In the present work, we report on the preparation of LiMnPO4 (lithiophilite) nanorods and mesocrystals composed of self-assembled rod subunits employing microwave-assisted precipitation with processing times on the time scale of minutes. Starting from metal salt precursors and H3PO4 as phosphate source, single-phase LiMnPO4 powders with grain sizes of approx. 35 and 65 nm with varying morphologies were obtained by tailoring the synthesis conditions using rac-1-phenylethanol as solvent. The mesocrystal formation, microstructure and phase composition were determined by electron microscopy, nitrogen physisorption, X-ray diffraction (including Rietveld refinement), dynamic light scattering, X-ray absorption and X-ray photoelectron spectroscopy, and other techniques. In addition, we investigated the formed organic matter by gas chromatography coupled with mass spectrometry in order to gain a deeper understanding of the dissolution\u2013precipitation process. Also, we demonstrate that the obtained LiMnPO4 nanocrystals can be redispersed in polar solvents such as ethanol and dimethylformamide and are suitable as building blocks for the fabrication of nanofibers via electrospinning

    Formation of Aluminum-Doped Zinc Oxide Nanocrystals via the Benzylamine Route at Low Reaction Kinetics

    Get PDF
    The influence of essential process parameters on the adjustability of specific process and particulate properties of aluminum‐doped zinc oxide (AZO) nanocrystals during synthesis via the benzylamine route at low reaction kinetics is demonstrated by enabling time‐resolved access of the selected measurement technique. It is shown that the validity of the pseudo‐first‐order process kinetics could be extended to the minimum operable reaction kinetics. On the other hand, the impacts of the process temperature and the initial precursor concentration on both the process kinetics and the particle morphology are discussed. The obtained data provide a versatile tool for precise process control by adjusting defined application‐specific particle properties of AZO during synthesis

    Evaluation of the Dispersion Stability of AZO Mesocrystals for Their Processing into Functional Thin Films Using Small Angle X-ray Scattering

    Get PDF
    Within the scope of the comprehensive elucidation of the entire process chain for the production of highly functional thin films made of semiconducting aluminum-doped zinc oxide ( AZO ) nanocrystals, this work deals with the detailed investigation of the stabilization sub-process, considering the requirements for the subsequent coating process. An innovative investigation procedure using non-invasive small angle X-ray scattering ( SAXS ) is developed, enabling an evaluation of qualitative and quantitative dispersion stability criteria of sterically stabilized AZO nanocrystals. On the one hand, qualitative criteria for minimizing layer inhomogeneities due to sedimentation as well as aggregate formation are discussed, enabling a high particle occupancy density. On the other hand, a procedure for determining the AZO concentration using SAXS , both in the stable phase and in the non-stabilized phase, is demonstrated to provide a quantitative evaluation of the stabilization success, having a significant impact on the final layer thickness. The obtained insights offer a versatile tool for the precise stabilization process control based on synthesis process using SAXS to meet coating specific requirements and thus a successful integration into the entire process chain for the production of functional AZO thin films

    Effect of the Anionic Counterpart: Molybdate vs. Tungstate in Energy Storage for Pseudo-Capacitor Applications

    Get PDF
    Nickel-based bimetallic oxides (BMOs) have shown significant potential in battery-type electrodes for pseudo-capacitors given their ability to facilitate redox reactions. In this work, two bimetallic oxides, NiMoO4 and NiWO4, were synthesized using a wet chemical route. The structure and electrochemical properties of the pseudo-capacitor cathode materials were characterized. NiMoO4 showed superior charge storage performance in comparison to NiWO4, exhibiting a discharge capacitance of 124 and 77 F.g-1, respectively. NiMoO4, moreover, demonstrates better capacity retention after 1000 cycles with 87.14% compared to 82.22% for NiWO4. The lower electrochemical performance of the latter was identified to result from the redox behavior during cycling. NiWO4 reacts in the alkaline solution and forms a passivation layer composed of WO3 on the electrode, while in contrast, the redox behavior of NiMoO4 is fully reversible

    Effect of the anionic counterpart: Molybdate vs. tungstate in energy storage for pseudo-capacitor applications

    Get PDF
    Nickel-based bimetallic oxides (BMOs) have shown significant potential in battery-type electrodes for pseudo-capacitors given their ability to facilitate redox reactions. In this work, two bimetallic oxides, NiMoO4 and NiWO4, were synthesized using a wet chemical route. The structure and electrochemical properties of the pseudo-capacitor cathode materials were characterized. NiMoO4 showed superior charge storage performance in comparison to NiWO4, exhibiting a discharge capacitance of 124 and 77 F·g−1, respectively. NiMoO4, moreover, demonstrates better capacity retention after 1000 cycles with 87.14% compared to 82.22% for NiWO4. The lower electrochemical performance of the latter was identified to result from the redox behavior during cycling. NiWO4 reacts in the alkaline solution and forms a passivation layer composed of WO3 on the electrode, while in contrast, the redox behavior of NiMoO4 is fully reversible

    Rapid Microfluidic Preparation of Niosomes for Targeted Drug Delivery

    Get PDF
    Niosomes are non-ionic surfactant-based vesicles with high promise for drug delivery applications. They can be rapidly prepared via microfluidics, allowing their reproducible production without the need of a subsequent size reduction step, by controlled mixing of two miscible phases of an organic (lipids dissolved in alcohol) and an aqueous solution in a microchannel. The control of niosome properties and the implementation of more complex functions, however, thus far are largely unknown for this method. Here we investigate microfluidics-based manufacturing of topotecan (TPT)-loaded polyethylene glycolated niosomes (PEGNIO). The flow rate ratio of the organic and aqueous phases was varied and optimized. Furthermore, the surface of TPT-loaded PEGNIO was modified with a tumor homing and penetrating peptide (tLyp-1). The designed nanoparticular drug delivery system composed of PEGNIO-TPT-tLyp-1 was fabricated for the first time via microfluidics in this study. The physicochemical properties were determined through dynamic light scattering (DLS) and zeta potential analysis. In vitro studies of the obtained formulations were performed on human glioblastoma (U87) cells. The results clearly indicated that tLyp-1-functionalized TPT-loaded niosomes could significantly improve anti-glioma treatment
    corecore