192 research outputs found

    Timely Long Tail Identification through Agent Based Monitoring and Analytics

    Get PDF
    The increasing complexity and scale of distributed systems has resulted in the manifestation of emergent behavior which substantially affects overall system performance. A significant emergent property is that of the "Long Tail", whereby a small proportion of task stragglers significantly impact job execution completion times. To mitigate such behavior, straggling tasks occurring within the system need to be accurately identified in a timely manner. However, current approaches focus on mitigation rather than identification, which typically identify stragglers too late in the execution lifecycle. This paper presents a method and tool to identify Long Tail behavior within distributed systems in a timely manner, through a combination of online and offline analytics. This is achieved through historical analysis to profile and model task execution patterns, which then inform online analytic agents that monitor task execution at runtime. Furthermore, we provide an empirical analysis of two large-scale production Cloud data enters that demonstrate the challenge of data skew within modern distributed systems, this analysis shows that approximately 5% of task stragglers caused by data skew impact 50% of the total jobs for batch processes. Our results demonstrate that our approach is capable of identifying task stragglers less than 11% into their execution lifecycle with 98% accuracy, signifying significant improvement over current state-of-the-art practice and enables far more effective mitigation strategies in large-scale distributed systems worldwide

    An Approach for Modeling and Ranking Node-level Stragglers in Cloud Datacenters

    Get PDF
    The ability of servers to effectively execute tasks within Cloud datacenters varies due to heterogeneous CPU and memory capacities, resource contention situations, network configurations and operational age. Unexpectedly slow server nodes (node-level stragglers) result in assigned tasks becoming task-level stragglers, which dramatically impede parallel job execution. However, it is currently unknown how slow nodes directly correlate to task straggler manifestation. To address this knowledge gap, we propose a method for node performance modeling and ranking in Cloud datacenters based on analyzing parallel job execution tracelog data. By using a production Cloud system as a case study, we demonstrate how node execution performance is driven by temporal changes in node operation as opposed to node hardware capacity. Different sample sets have been filtered in order to evaluate the generality of our framework, and the analytic results demonstrate that node abilities of executing parallel tasks tend to follow a 3-parameter-loglogistic distribution. Further statistical attribute values such as confidence interval, quantile value, extreme case possibility, etc. can also be used for ranking and identifying potential straggler nodes within the cluster. We exploit a graph-based algorithm for partitioning server nodes into five levels, with 0.83% of node-level stragglers identified. Our work lays the foundation towards enhancing scheduling algorithms by avoiding slow nodes, reducing task straggler occurrence, and improving parallel job performance

    Reducing Late-Timing Failure at Scale: Straggler Root-Cause Analysis in Cloud Datacenters

    Get PDF
    Task stragglers hinder effective parallel job execution in Cloud datacenters, resulting in late-timing failures due to the violation of specified timing constraints. Stragglertolerant methods such as speculative execution provide limited effectiveness due to (i) lack of precise straggler root-cause knowledge and (ii) straggler identification occurring too late within a job lifecycle. This paper proposes a method to ascertain underlying straggler root-causes by analyzing key parameters within large-scale distributed systems, and to determine the correlation between straggler occurrence and factors including resource contention, task concurrency, and server failures. Our preliminary study of a production Cloud datacenter indicates that the dominate straggler root-cause is resultant of high temporal resource contention. The result can assist in enhancing straggler prediction and mitigation for tolerating late-timing failures within large-scale distributed systems

    Adaptive Speculation for Efficient Internetware Application Execution in Clouds

    Get PDF
    Modern Cloud computing systems are massive in scale, featuring environments that can execute highly dynamic Internetware applications with huge numbers of interacting tasks. This has led to a substantial challenge the straggler problem, whereby a small subset of slow tasks significantly impede parallel job completion. This problem results in longer service responses, degraded system performance, and late timing failures that can easily threaten Quality of Service (QoS) compliance. Speculative execution (or speculation) is the prominent method deployed in Clouds to tolerate stragglers by creating task replicas at runtime. The method detects stragglers by specifying a predefined threshold to calculate the difference between individual tasks and the average task progression within a job. However, such a static threshold debilitates speculation effectiveness as it fails to capture the intrinsic diversity of timing constraints in Internetware applications, as well as dynamic environmental factors such as resource utilization. By considering such characteristics, different levels of strictness for replica creation can be imposed to adaptively achieve specified levels of QoS for different applications. In this paper we present an algorithm to improve the execution efficiency of Internetware applications by dynamically calculating the straggler threshold, considering key parameters including job QoS timing constraints, task execution progress, and optimal system resource utilization. We implement this dynamic straggler threshold into the YARN architecture to evaluate it’s effectiveness against existing state-of-the-art solutions. Results demonstrate that the proposed approach is capable of reducing parallel job response times by up to 20% compared to the static threshold, as well as a higher speculation success rate, achieving up to 66.67% against 16.67% in comparison to the static method

    Straggler Root-Cause and Impact Analysis for Massive-scale Virtualized Cloud Datacenters

    Get PDF
    Increased complexity and scale of virtualized distributed systems has resulted in the manifestation of emergent phenomena substantially affecting overall system performance. This phenomena is known as “Long Tail”, whereby a small proportion of task stragglers significantly impede job completion time. While work focuses on straggler detection and mitigation, there is limited work that empirically studies straggler root-cause and quantifies its impact upon system operation. Such analysis is critical to ascertain in-depth knowledge of straggler occurrence for focusing developmental and research efforts towards solving the Long Tail challenge. This paper provides an empirical analysis of straggler root-cause within virtualized Cloud datacenters; we analyze two large-scale production systems to quantify the frequency and impact stragglers impose, and propose a method for conducting root-cause analysis. Results demonstrate approximately 5% of task stragglers impact 50% of total jobs for batch processes, and 53% of stragglers occur due to high server resource utilization. We leverage these findings to propose a method for extreme straggler detection through a combination of offline execution patterns modeling and online analytic agents to monitor tasks at runtime. Experiments show the approach is capable of detecting stragglers less than 11% into their execution lifecycle with 95% accuracy for short duration jobs

    Virtual Machine Level Temperature Profiling and Prediction in Cloud Datacenters

    Get PDF
    Temperature prediction can enhance datacenter thermal management towards minimizing cooling power draw. Traditional approaches achieve this through analyzing task-temperature profiles or resistor-capacitor circuit models to predict CPU temperature. However, they are unable to capture task resource heterogeneity within multi-tenant environments and make predictions under dynamic scenarios such as virtual machine migration, which is one of the main characteristics of Cloud computing. This paper proposes virtual machine level temperature prediction in Cloud datacenters. Experiments show that the mean squared error of stable CPU temperature prediction is within 1.10, and dynamic CPU temperature prediction can achieve 1.60 in most scenarios

    Multi-tenancy in cloud computing

    Get PDF
    As Cloud Computing becomes the trend of information technology computational model, the Cloud security is becoming a major issue in adopting the Cloud where security is considered one of the most critical concerns for the large customers of Cloud (i.e. governments and enterprises). Such valid concern is mainly driven by the Multi-Tenancy situation which refers to resource sharing in Cloud Computing and its associated risks where confidentiality and/or integrity could be violated. As a result, security concerns may harness the advancement of Cloud Computing in the market. So, in order to propose effective security solutions and strategies a good knowledge of the current Cloud implementations and practices, especially the public Clouds, must be understood by professionals. Such understanding is needed in order to recognize attack vectors and attack surfaces. In this paper we will propose an attack model based on a threat model designed to take advantage of Multi-Tenancy situation only. Before that, a clear understanding of Multi-Tenancy, its origin and its benefits will be demonstrated. Also, a novel way on how to approach Multi-Tenancy will be illustrated. Finally, we will try to sense any suspicious behavior that may indicate to a possible attack where we will try to recognize the proposed attack model empirically from Google trace logs. Google trace logs are a 29-day worth of data released by Google. The data set was utilized in reliability and power consumption studies, but not been utilized in any security study to the extent of our knowledge

    Holistic Virtual Machine Scheduling in Cloud Datacenters towards Minimizing Total Energy

    Get PDF
    Energy consumed by Cloud datacenters has dramatically increased, driven by rapid uptake of applications and services globally provisioned through virtualization. By applying energy-aware virtual machine scheduling, Cloud providers are able to achieve enhanced energy efficiency and reduced operation cost. Energy consumption of datacenters consists of computing energy and cooling energy. However, due to the complexity of energy and thermal modeling of realistic Cloud datacenter operation, traditional approaches are unable to provide a comprehensive in-depth solution for virtual machine scheduling which encompasses both computing and cooling energy. This paper addresses this challenge by presenting an elaborate thermal model that analyzes the temperature distribution of airflow and server CPU. We propose GRANITE – a holistic virtual machine scheduling algorithm capable of minimizing total datacenter energy consumption. The algorithm is evaluated against other existing workload scheduling algorithms MaxUtil, TASA, IQR and Random using real Cloud workload characteristics extracted from Google datacenter tracelog. Results demonstrate that GRANITE consumes 4.3% - 43.6% less total energy in comparison to the state-of-the-art, and reduces the probability of critical temperature violation by 99.2% with 0.17% SLA violation rate as the performance penalty

    Cross-VM network attacks & their countermeasures within cloud computing environments

    Get PDF
    Cloud computing is a contemporary model in which the computing resources are dynamically scaled-up and scaled-down to customers, hosted within large-scale multi-tenant systems. These resources are delivered as improved, cost-effective and available upon request to customers. As one of the main trends of IT industry in modern ages, cloud computing has extended momentum and started to transform the mode enterprises build and offer IT solutions. The primary motivation in using cloud computing model is cost-effectiveness. These motivations can compel Information and Communication Technologies (ICT) organizations to shift their sensitive data and critical infrastructure on cloud environments. Because of the complex nature of underlying cloud infrastructure, the cloud environments are facing a large number of challenges of misconfigurations, cyber-attacks, root-kits, malware instances etc which manifest themselves as a serious threat to cloud environments. These threats noticeably decline the general trustworthiness, reliability and accessibility of the cloud. Security is the primary concern of a cloud service model. However, a number of significant challenges revealed that cloud environments are not as much secure as one would expect. There is also a limited understanding regarding the offering of secure services in a cloud model that can counter such challenges. This indicates the significance of the fact that what establishes the threat in cloud model. One of the main threats in a cloud model is of cost-effectiveness, normally cloud providers reduce cost by sharing infrastructure between multiple un-trusted VMs. This sharing has also led to several problems including co-location attacks. Cloud providers mitigate co-location attacks by introducing the concept of isolation. Due to this, a guest VM cannot interfere with its host machine, and with other guest VMs running on the same system. Such isolation is one of the prime foundations of cloud security for major public providers. However, such logical boundaries are not impenetrable. A myriad of previous studies have demonstrated how co-resident VMs could be vulnerable to attacks through shared file systems, cache side-channels, or through compromising of hypervisor layer using rootkits. Thus, the threat of cross-VM attacks is still possible because an attacker uses one VM to control or access other VMs on the same hypervisor. Hence, multiple methods are devised for strategic VM placement in order to exploit co-residency. Despite the clear potential for co-location attacks for abusing shared memory and disk, fine grained cross-VM network-channel attacks have not yet been demonstrated. Current network based attacks exploit existing vulnerabilities in networking technologies, such as ARP spoofing and DNS poisoning, which are difficult to use for VM-targeted attacks. The most commonly discussed network-based challenges focus on the fact that cloud providers place more layers of isolation between co-resided VMs than in non-virtualized settings because the attacker and victim are often assigned to separate segmentation of virtual networks. However, it has been demonstrated that this is not necessarily sufficient to prevent manipulation of a victim VM’s traffic. This thesis presents a comprehensive method and empirical analysis on the advancement of co-location attacks in which a malicious VM can negatively affect the security and privacy of other co-located VMs as it breaches the security perimeter of the cloud model. In such a scenario, it is imperative for a cloud provider to be able to appropriately secure access to the data such that it reaches to the appropriate destination. The primary contribution of the work presented in this thesis is to introduce two innovative attack models in leading cloud models, impersonation and privilege escalation, that successfully breach the security perimeter of cloud models and also propose countermeasures that block such types of attacks. The attack model revealed in this thesis, is a combination of impersonation and mirroring. This experimental setting can exploit the network channel of cloud model and successfully redirects the network traffic of other co-located VMs. The main contribution of this attack model is to find a gap in the contemporary network cloud architecture that an attacker can exploit. Prior research has also exploited the network channel using ARP poisoning, spoofing but all such attack schemes have been countered as modern cloud providers place more layers of security features than in preceding settings. Impersonation relies on the already existing regular network devices in order to mislead the security perimeter of the cloud model. The other contribution presented of this thesis is ‘privilege escalation’ attack in which a non-root user can escalate a privilege level by using RoP technique on the network channel and control the management domain through which attacker can manage to control the other co-located VMs which they are not authorized to do so. Finally, a countermeasure solution has been proposed by directly modifying the open source code of cloud model that can inhibit all such attacks

    A unified model for holistic power usage in cloud datacenter servers

    Get PDF
    Cloud datacenters are compute facilities formed by hundreds and thousands of heterogeneous servers requiring significant power requirements to operate effectively. Servers are composed by multiple interacting sub-systems including applications, microelectronic processors, and cooling which reflect their respective power profiles via different parameters. What is presently unknown is how to accurately model the holistic power usage of the entire server when including all these sub-systems together. This becomes increasingly challenging when considering diverse utilization patterns, server hardware characteristics, air and liquid cooling techniques, and importantly quantifying the non-electrical energy cost imposed by cooling operation. Such a challenge arises due to the need for multi-disciplinary expertise required to study server operation holistically. This work provides a unified model for capturing holistic power usage within Cloud datacenter servers. Constructed through controlled laboratory experiments, the model captures the relationship of server power usage between software, hardware, and cooling agnostic of architecture and cooling type (air and liquid). An exciting prospect is the ability to quantify the amount of non-electrical power consumed through cooling, allowing for more realistic and accurate server power profiles. This work represents the first empirically supported analysis and modeling of holistic power usage for Cloud datacenter servers, and bridges a significant gap between computer science and mechanical engineering research. Model validation through experiments demonstrates an average standard error of 3% for server power usage within both air and liquid cooled environments
    corecore