899 research outputs found
Internal alignment and position resolution of the silicon tracker of DAMPE determined with orbit data
The DArk Matter Particle Explorer (DAMPE) is a space-borne particle detector
designed to probe electrons and gamma-rays in the few GeV to 10 TeV energy
range, as well as cosmic-ray proton and nuclei components between 10 GeV and
100 TeV. The silicon-tungsten tracker-converter is a crucial component of
DAMPE. It allows the direction of incoming photons converting into
electron-positron pairs to be estimated, and the trajectory and charge (Z) of
cosmic-ray particles to be identified. It consists of 768 silicon micro-strip
sensors assembled in 6 double layers with a total active area of 6.6 m.
Silicon planes are interleaved with three layers of tungsten plates, resulting
in about one radiation length of material in the tracker. Internal alignment
parameters of the tracker have been determined on orbit, with non-showering
protons and helium nuclei. We describe the alignment procedure and present the
position resolution and alignment stability measurements
Recommended from our members
Time-Integrated Neutrino Source Searches with 10 Years of IceCube Data.
This Letter presents the results from pointlike neutrino source searches using ten years of IceCube data collected between April 6, 2008 and July 10, 2018. We evaluate the significance of an astrophysical signal from a pointlike source looking for an excess of clustered neutrino events with energies typically above ∼1 TeV among the background of atmospheric muons and neutrinos. We perform a full-sky scan, a search within a selected source catalog, a catalog population study, and three stacked Galactic catalog searches. The most significant point in the northern hemisphere from scanning the sky is coincident with the Seyfert II galaxy NGC 1068, which was included in the source catalog search. The excess at the coordinates of NGC 1068 is inconsistent with background expectations at the level of 2.9σ after accounting for statistical trials from the entire catalog. The combination of this result along with excesses observed at the coordinates of three other sources, including TXS 0506+056, suggests that, collectively, correlations with sources in the northern catalog are inconsistent with background at 3.3σ significance. The southern catalog is consistent with background. These results, all based on searches for a cumulative neutrino signal integrated over the 10 years of available data, motivate further study of these and similar sources, including time-dependent analyses, multimessenger correlations, and the possibility of stronger evidence with coming upgrades to the detector
Recommended from our members
Efficient propagation of systematic uncertainties from calibration to analysis with the SnowStorm method in IceCube
Efficient treatment of systematic uncertainties that depend on a large number of nuisance parameters is a persistent difficulty in particle physics and astrophysics experiments. Where low-level effects are not amenable to simple parameterization or re-weighting, analyses often rely on discrete simulation sets to quantify the effects of nuisance parameters on key analysis observables. Such methods may become computationally untenable for analyses requiring high statistics Monte Carlo with a large number of nuisance degrees of freedom, especially in cases where these degrees of freedom parameterize the shape of a continuous distribution. In this paper we present a method for treating systematic uncertainties in a computationally efficient and comprehensive manner using a single simulation set with multiple and continuously varied nuisance parameters. This method is demonstrated for the case of the depth-dependent effective dust distribution within the IceCube Neutrino Telescope
Recommended from our members
Search for sources of astrophysical neutrinos using seven years of icecube cascade events
Low-background searches for astrophysical neutrino sources anywhere in the sky can be performed using cascade events induced by neutrinos of all flavors interacting in IceCube with energies as low as ∼1 TeV. Previously we showed that, even with just two years of data, the resulting sensitivity to sources in the southern sky is competitive with IceCube and ANTARES analyses using muon tracks induced by charge current muon neutrino interactions - especially if the neutrino emission follows a soft energy spectrum or originates from an extended angular region. Here, we extend that work by adding five more years of data, significantly improving the cascade angular resolution, and including tests for point-like or diffuse Galactic emission to which this data set is particularly well suited. For many of the signal candidates considered, this analysis is the most sensitive of any experiment to date. No significant clustering was observed, and thus many of the resulting constraints are the most stringent to date. In this paper we will describe the improvements introduced in this analysis and discuss our results in the context of other recent work in neutrino astronomy
Detection of the temporal variation of the sun's cosmic ray shadow with the IceCube detector
We report on the observation of a deficit in the cosmic ray flux from the directions of the Moon and Sun with five years of data taken by the IceCube Neutrino Observatory. Between 2010 May and 2011 May the IceCube detector operated with 79 strings deployed in the glacial ice at the South Pole, and with 86 strings between 2011 May and 2015 May. A binned analysis is used to measure the relative deficit and significance of the cosmic ray shadows. Both the cosmic ray Moon and Sun shadows are detected with high statistical significance (> 10 sigma) for each year. The results for the Moon shadow are consistent with previous analyses and verify the stability of the IceCube detector over time. This work represents the first observation of the Sun shadow with the IceCube detector. We show that the cosmic ray shadow of the Sun varies with time. These results make it possible to study cosmic ray transport near the Sun with future data from IceCube
Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons
High energy cosmic ray electrons plus positrons (CREs), which lose energy
quickly during their propagation, provide an ideal probe of Galactic
high-energy processes and may enable the observation of phenomena such as
dark-matter particle annihilation or decay. The CRE spectrum has been directly
measured up to TeV in previous balloon- or space-borne experiments,
and indirectly up to TeV by ground-based Cherenkov -ray
telescope arrays. Evidence for a spectral break in the TeV energy range has
been provided by indirect measurements of H.E.S.S., although the results were
qualified by sizeable systematic uncertainties. Here we report a direct
measurement of CREs in the energy range by the
DArk Matter Particle Explorer (DAMPE) with unprecedentedly high energy
resolution and low background. The majority of the spectrum can be properly
fitted by a smoothly broken power-law model rather than a single power-law
model. The direct detection of a spectral break at TeV confirms the
evidence found by H.E.S.S., clarifies the behavior of the CRE spectrum at
energies above 1 TeV and sheds light on the physical origin of the sub-TeV
CREs.Comment: 18 pages, 6 figures, Nature in press, doi:10.1038/nature2447
The -ray Emission of Star-Forming Galaxies
A majority of the -ray emission from star-forming galaxies is
generated by the interaction of high-energy cosmic rays with the interstellar
gas and radiation fields. Star-forming galaxies are expected to contribute to
both the extragalactic -ray background and the IceCube astrophysical
neutrino flux. Using roughly 10\,years of -ray data taken by the {\it
Fermi} Large Area Telescope, in this study we constrain the -ray
properties of star-forming galaxies. We report the detection of 11 bona-fide
-ray emitting galaxies and 2 candidates. Moreover, we show that the
cumulative -ray emission of below-threshold galaxies is also
significantly detected at 5\, confidence. The -ray
luminosity of resolved and unresolved galaxies is found to correlate with the
total (8-1000\,m) infrared luminosity as previously determined. Above
1\,GeV, the spectral energy distribution of resolved and unresolved galaxies is
found to be compatible with a power law with a photon index of
.
Finally, we find that star-forming galaxies account for roughly 5\,\% and
3\,\% of the extragalactic -ray background and the IceCube neutrino
flux, respectively.Comment: Accepted for publication in The Astrophysical Journa
Recommended from our members
A Search for MeV to TeV Neutrinos from Fast Radio Bursts with IceCube
We present two searches for IceCube neutrino events coincident with 28 fast radio bursts (FRBs) and 1 repeating FRB. The first improves on a previous IceCube analysis - searching for spatial and temporal correlation of events with FRBs at energies greater than roughly 50 GeV - by increasing the effective area by an order of magnitude. The second is a search for temporal correlation of MeV neutrino events with FRBs. No significant correlation is found in either search; therefore, we set upper limits on the time-integrated neutrino flux emitted by FRBs for a range of emission timescales less than one day. These are the first limits on FRB neutrino emission at the MeV scale, and the limits set at higher energies are an order-of-magnitude improvement over those set by any neutrino telescope
- …
