427 research outputs found
Analysis of temporal gait features extracted from accelerometer-based signals during ambulatory walking in Parkinson’s disease
Objective: To perform a proof-of-concept study showing the utility of versatile algorithms aimed at objectively quantifying the duration of refined gait features during ambulatory walking in a patient with Parkinson’s disease (PD) in ON and OFF medication states as compared with an age-matched control subject
Effects of α-synuclein levels on cerebral synaptic function: Validation of a novel PET radioligand for the early diagnosis of Parkinson’s disease
Background
In Parkinson’s disease, converging evidence supports a pathogenic role for excessive α–synuclein accumulation in synaptic terminals that may propagate back to the soma of vulnerable nerve cells such as neurons in the substantia nigra pars compacta. The resulting loss of dopaminergic terminals in the striatum can be demonstrated in vivo using 18F-Dopa-PET (positron emission tomography). However, there’s currently no validated biomarker of the progressive synaptic dysfunction in other vulnerable areas such as the cerebral cortex.
Goal
In this longitudinal study, we will test the hypothesis that the loss of synaptic terminals in a mouse model of excessive α–synuclein accumulation can be demonstrated in vivo before the occurrence of behavioural disturbances using 18F-UCB-H, a new PET biomarker developed at CRC. We will also test if this new imaging modality is sensitive enough to study the effect of a disease modifying therapy such as chronic physical exercise.
Methods
We will use microPET for the in vivo quantification of 18F-UCB-H brain uptake in 16 wild type animals and 16 transgenic (Tg) mice overexpressing human α–syn under the mThy1 promotor every 2 months. Data will be validated against post-mortem analyses after the last PET study.
Predictions
We predict decreased tracer uptake over time in the basal ganglia and cerebral cortex in Tg mice as compared with WT animals. Also, we predict a relationship between 18F-UCB-H uptake levels in basal ganglia and cerebral cortex and progressive alterations in both motor and cognitive functions, respectively. Further, we also expect that chronic exercise will slow down both motor and cognitive disturbances, as well as the rate of 18F-UCB-H brain uptake decreases.
Conclusion
If 18F-UCB-H PET proves to be a valid biomarker for the early detection of α–synuclein accumulation in the pre-clinical model of PD, the methods will tested on human clinical populations
Optimising Dopamine Treatment Strategies in Progressive Parkinson’s Disease
peer reviewedDopamine replacement therapies are the most common treatment approach for motor-symptom relief in Parkinson’s disease (PD). Levodopa (L-DOPA) remains the gold standard therapy for PD, however its long-term use is associated with the emergence of L-DOPA-induced dyskinesia and fluctuations. The pathophysiology of these deficits is unclear. Emerging evidence suggests that delaying L-DOPA treatment does not have protective effects on the development of these motor complications, and proposes that dysfunction in other neurotransmitter systems and the progressive nature of the disease may play an important role. Specifically, hyperexcitability in glutamatergic neural transmission may be a key contributor throughout PD progression. Targeting non-dopaminergic systems may therefore provide an effective alternative to the current dopamine-centred approaches. In addition, non-motor symptoms in PD may likewise benefit from alternative pharmacological approaches. Safinamide is a PD treatment with an innovative dual mechanism of action combining modulation of both dopaminergic and glutamatergic pathways. Clinically, combination therapy with L-DOPA and safinamide improves motor functions, decreasing OFF time and increasing ON time with no/non-troublesome dyskinesia (the so called “good ON time”). In addition, safinamide significantly improves some non-motor symptoms such as pain and mood
How predictive are temporal lobe changes of underlying TDP-43 pathology in the ALS-FTD continuum?
Detection of underling proteinopathies is becoming increasingly important across neurodegenerative conditions due to upcoming disease intervention trials. In this review, we explored how temporal lobe changes in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) can potentially predict underlying TDP-43 pathology subtypes in FTD. To date, emphasis has been given to frontal lobe changes in the study of the cognitive and behavioural impairments in both syndromes but an increasing number of pathological, imaging and neuropsychological studies suggest how temporal lobe changes could critically affect the cognition and behaviour of these conditions. In this current article, we reviewed pathological, imaging as well as clinical/neuropsychological findings of temporal involvement in the ALS-FTD continuum, how they relate to temporal lobe changes and the underlying TDP-43 pathology in FTD. Findings across studies show that TDP-43 pathology occurs and coincides in many structures in ALS and FTD, but especially in the temporal lobes. In particular, anterior and medial temporal lobes atrophy is consistently found in ALS and FTD. In addition, memory and language impairment as well as emotional and Theory of Mind (ToM) processing deficits that are characteristics of the two diseases are highly correlated to temporal lobe dysfunction. We conclude by showing that temporal lobe changes due to TDP-43 type B might be particular predictive of TDP-43 type B pathology in behavioural variant FTD (bvFTD), which clearly needs to be investigated further in the future
Endocarditis after Use of Tongue Scraper
We explored the neural substrate of anosognosia for cognitive impairment in Alzheimer's disease (AD). Two hundred nine patients with mild to moderate dementia and their caregivers assessed patients' cognitive impairment by answering a structured questionnaire. Subjects rated 13 cognitive domains as not impaired or associated with mild, moderate, severe, or very severe difficulties, and a sum score was calculated. Two measures of anosognosia were derived. A patient's self assessment, unconfounded by objective measurements of cognitive deficits such as dementia severity and episodic memory impairment, provided an estimate of impaired self-evaluative judgment about cognition in AD. Impaired self-evaluation was related to a decrease in brain metabolism measured with 18F-2-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) in orbital prefrontal cortex and in medial temporal structures. In a cognitive model of anosognosia, medial temporal dysfunction might impair a comparison mechanism between current information on cognition and personal knowledge. Hypoactivity in orbitofrontal cortex may not allow AD patients to update the qualitative judgment associated with their impaired cognitive abilities. Caregivers perceived greater cognitive impairments than patients did. The discrepancy score between caregiver's and patient's evaluations, an other measure of anosognosia, was negatively related to metabolic activity located in the temporoparietal junction, consistent with an impairment of self-referential processes and perspective taking in AD
- …
