683 research outputs found

    From primal sketches to the recovery of intensity and reflectance representations

    Get PDF
    A local change in intensity (edge) is a characteristic that is preserved when an image is filtered through a bandpass filter. Primal sketch representations of images, using the bandpass-filtered data, have become a common process since Marr proposed his model for early human vision. Here, researchers move beyond the primal sketch extraction to the recovery of intensity and reflectance representations using only the bandpass-filtered data. Assessing the response of an ideal step edge to the Laplacian of Gaussian (NAb/A squared G) filter, they found that the resulting filtered data preserves the original change of intensity that created the edge in addition to the edge location. Using the filtered data, they can construct the primal sketches and recover the original (relative) intensity levels between the boundaries. It was found that the result of filtering an ideal step edge with the Intensity-Dependent Spatial Summation (IDS) filter preserves the actual intensity on both sides of the edge, in addition to the edge location. The IDS filter also preserves the reflectance ratio at the edge location. Therefore, one can recover the intensity levels between the edge boundaries as well as the (relative) reflectance representation. The recovery of the reflectance representation is of special interest as it erases shadowing degradations and other dependencies on temporal illumination. This method offers a new approach to low-level vision processing as well as to high data-compression coding. High compression can be gained by transmitting only the information associated with the edge location (edge primitives) that is necessary for the recover

    Transient hot-film sensor response in a shock tube

    Get PDF
    Shock tube experiments were performed to determine the response of a hot-film sensor, mounted flush on the side wall of a shock tube, to unsteady flow behind a normal shock wave. The present experiments attempt to isolate the response of the anemometer due only to the change in convective heat transfer at the hot-film surface. The experiments, performed at low supersonic shock speeds in air, are described along with the data acquisition procedure. The change in convective heat transfer is deduced from the data and the results are compared with those from transient boundary layer theory and another set of experimental results. Finally, a transient local heat transfer coefficient is formulated for use as the forcing function in a hot-film sensor instrument model simulation

    Twenty-five years of aerodynamic research with IR imaging: A survey

    Get PDF
    Infrared imaging used in aerodynamic research evolved during the last 25 years into a rewarding experimental technique for investigation of body-flow viscous interactions, such as heat flux determination and boundary layer transition. The technique of infrared imaging matched well its capability to produce useful results, with the expansion of testing conditions in the entire spectrum of wind tunnels, from hypersonic high-enthalpy facilities to cryogenic transonic wind tunnels. With unique achievements credited to its past, the current trend suggests a change in attitude towards this technique: from the perception as an exotic, project-oriented tool, to the status of a routine experimental procedure

    Low-speed flowfield characterization by infrared measurements of surface temperatures

    Get PDF
    An experimental program was aimed at identifying areas in low speed aerodynamic research where infrared imaging systems can make significant contributions. Implementing a new technique, a long electrically heated wire was placed across a laminar jet. By measuring the temperature distribution along the wire with the IR imaging camera, the flow behavior was identified. Furthermore, using Nusselt number correlations, the velocity distribution could be deduced. The same approach was used to survey wakes behind cylinders in a wind-tunnel. This method is suited to investigate flows with position dependent velocities, e.g., boundary layers, confined flows, jets, wakes, and shear layers. It was found that the IR imaging camera cannot accurately track high gradient temperature fields. A correlation procedure was devised to account for this limitation. Other wind-tunnel experiments included tracking the development of the laminar boundary layer over a warmed flat plate by measuring the chordwise temperature distribution. This technique was applied also to the flow downstream from a rearward facing step. Finally, the IR imaging system was used to study boundary layer behavior over an airfoil at angles of attack from zero up to separation. The results were confirmed with tufts observable both visually and with the IR imaging camera

    Convective response of a wall-mounted hot-film sensor in a shock tube

    Get PDF
    Shock tube experiments were performed in order to determine the response of a single hot-film element of a sensor array to transiently induced flow behind weak normal shock waves. The experiments attempt to isolate the response due only to the change in convective heat transfer at the hot-film surface mounted on the wall of the shock tube. The experiments are described, the results being correlated with transient boundary layer theory and compared with an independent set of experimental results. One of the findings indicates that the change in the air properties (temperature and pressure) precedes the air mass transport, causing an ambiguity in the sensor response to the development of the velocity boundary layer. Also, a transient, local heat transfer coefficient is formulated to be used as a forcing function in an hot-film instrument model and simulation which remains under investigation

    The BAH domain of Rsc2 is a histone H3 binding domain

    Get PDF
    Bromo-adjacent homology (BAH) domains are commonly found in chromatin-associated proteins and fall into two classes; Remodels the Structure of Chromatin (RSC)-like or Sir3-like. Although Sir3-like BAH domains bind nucleosomes, the binding partners of RSC-like BAH domains are currently unknown. The Rsc2 subunit of the RSC chromatin remodeling complex contains an RSC-like BAH domain and, like the Sir3-like BAH domains, we find Rsc2 BAH also interacts with nucleosomes. However, unlike Sir3-like BAH domains, we find that Rsc2 BAH can bind to recombinant purified H3 in vitro, suggesting that the mechanism of nucleosome binding is not conserved. To gain insight into the Rsc2 BAH domain, we determined its crystal structure at 2.4 Å resolution. We find that it differs substantially from Sir3-like BAH domains and lacks the motifs in these domains known to be critical for making contacts with histones. We then go on to identify a novel motif in Rsc2 BAH that is critical for efficient H3 binding in vitro and show that mutation of this motif results in defective Rsc2 function in vivo. Moreover, we find this interaction is conserved across Rsc2-related proteins. These data uncover a binding target of the Rsc2 family of BAH domains and identify a novel motif that mediates this interaction

    Vitagraph Before Griffith: Forging Ahead in the Nickelodeon Era

    Get PDF

    Battery Centric Serial Hybrid Aircraft Performance and Design Space

    Get PDF
    The design space and flight envelope of a battery centric serial hybrid aircraft has been analytically derived. The formulation assumes cruising flight only and all energy available is used. The flight envelope can be generated for any conventional propeller driven serial hybrid aircraft. The advantageous combination of an electric motor and controllable-pitch electric propeller was also explored. The results are used to be able to control efficiency and noise at constant thrust and therefore constant airspeed. Manufacturer provided electric motor and propeller data is used for efficiency purposes. Since the electric motor is virtually silent compared to the propeller, published noise evaluation methods are used to estimate the noise footprint of the propeller. Serial hybrid aircraft are appealing for their expansion of the flight envelope compared to fully electric aircraft and for their potential to operate where gasoline engines alone cannot. A serial hybrid configuration also allows for a controlled efficiency output and noise footprint to be able to either reduce emissions and cost or mitigate noise over noise sensitive areas. While a fully electric aircraft can achieve the efficiency and noise solutions, the serial hybrid solution offers considerably better range and endurance, making it viable for longer haul flights at higher airspeeds

    Low Speed Flowfield Characterization by Infrared Measurements of Surface Temperatures

    Get PDF
    An experimental program was aimed at identifying areas in low speed aerodynamic research where infrared imaging systems can make significant contributions. Implementing a new technique, a long electrically heated wire was placed across a laminar jet. By measuring the temperature distribution along the wire with the IR imaging camera, the flow behavior was identified. Furthermore, using Nusselt number correlations, the velocity distribution could be deduced. The same approach was used to survey wakes behind cylinders in a wind-tunnel. This method is suited to investigate flows with position dependent velocities, e.g., boundary layers, confined flows, jets, wakes and shear layers. It was found that the IR imaging camera cannot accurately track high gradient temperature fields. A correction procedure was devised to account for this limitation. Other wind-tunnel experiments included tracking the development of the laminar boundary layer over a warmed flat plate by measuring the chordwise temperature distribution. This technique was applied also to the flow downstream from a rearward facing step. Finally, the IR imaging system was used to study boundary layer behavior over an airfoil at angles of attack from zero up to separation. The results were confirmed with tufts observable both visually and with the IR imaging camera
    corecore