389 research outputs found

    Cloning Dropouts: Implications for Galaxy Evolution at High Redshift

    Full text link
    The evolution of high redshift galaxies in the two Hubble Deep Fields, HDF-N and HDF-S, is investigated using a cloning technique that replicates z~ 2-3 U dropouts to higher redshifts, allowing a comparison with the observed B and V dropouts at higher redshifts (z ~ 4-5). We treat each galaxy selected for replication as a set of pixels that are k-corrected to higher redshift, accounting for resampling, shot-noise, surface-brightness dimming, and the cosmological model. We find evidence for size evolution (a 1.7x increase) from z ~ 5 to z ~ 2.7 for flat geometries (Omega_M+Omega_LAMBDA=1.0). Simple scaling laws for this cosmology predict that size evolution goes as (1+z)^{-1}, consistent with our result. The UV luminosity density shows a similar increase (1.85x) from z ~ 5 to z ~ 2.7, with minimal evolution in the distribution of intrinsic colors for the dropout population. In general, these results indicate less evolution than was previously reported, and therefore a higher luminosity density at z ~ 4-5 (~ 50% higher) than other estimates. We argue the present technique is the preferred way to understand evolution across samples with differing selection functions, the most relevant differences here being the color cuts and surface brightness thresholds (e.g., due to the (1+z)^4 cosmic surface brightness dimming effect).Comment: 56 pages, 22 figures, accepted for publication in Ap

    The Sizes of Candidate z910z\sim9-10 Galaxies: confirmation of the bright CANDELS sample and relation with luminosity and mass

    Get PDF
    Recently, a small sample of six z910z\sim9-10 candidates was discovered in CANDELS that are 1020×\sim10-20\times more luminous than any of the previous z910z\sim9-10 galaxies identified over the HUDF/XDF and CLASH fields. We measure the sizes of these candidates to map out the size evolution of galaxies from the earliest observable times. Their sizes are also used to provide a valuable constraint on whether these unusual galaxy candidates are at high redshift. Using galfit to derive sizes from the CANDELS F160W images of these candidates, we find a mean size of 0.13±\pm0.02" (or 0.5±\pm0.1 kpc at z910z\sim9-10). This handsomely matches the 0.6 kpc size expected extrapolating lower redshift measurements to z910z\sim9-10, while being much smaller than the 0.59" mean size for lower-redshift interlopers to z910z\sim9-10 photometric selections lacking the blue IRAC color criterion. This suggests that source size may be an effective constraint on contaminants from z910z\sim9-10 selections lacking IRAC data. Assuming on the basis of the strong photometric evidence that the Oesch et al. 2014 sample is entirely at z910z\sim9-10, we can use this sample to extend current constraints on the size-luminosity, size-mass relation, and size evolution of galaxies to z10z\sim10. We find that the z910z\sim9-10 candidate galaxies have broadly similar sizes and luminosities as z6z\sim6-8 counterparts with star-formation-rate surface densities in the range of ΣSFR=120M yr1kpc2\rm \Sigma_{SFR}=1-20\, M_\odot~ yr^{-1}\, kpc^{-2}. The stellar mass-size relation is uncertain, but shallower than those inferred for lower-redshift galaxies. In combination with previous size measurements at z=4-7, we find a size evolution of (1+z)m(1+z)^{-m} with m=1.0±0.1m=1.0\pm0.1 for >0.3Lz=3>0.3L^*_{z=3} galaxies, consistent with the evolution previously derived from 2<z<82 < z < 8 galaxies.Comment: 9 figures, 5 tables, accepted by Ap

    Line Strengths in Early-Type Cluster Galaxies at z=0.33: Implications for alpha/Fe, Nitrogen and the Histories of E/S0s

    Get PDF
    [Heavily Abbreviated] In this paper we analyze previously published spectra with high signal-to-noise ratios of E/S0 galaxies in the rich cluster CL1358+62 at z=0.33, and introduce techniques for fitting stellar population models to the data. Here we focus on the 19 E and S0 galaxies with an homogeneous set of eight blue Lick indices. We explore the galaxy properties using six-parameter stellar population models from the literature, and describe an approach for fitting the models differentially, such that the largest systematic errors are avoided. We find: (1) no differences between the stellar population parameters of Es and S0s, at fixed sigma; (2) the stars in the Es and S0s are uniformly old, consistent with previously published results using M/L ratios; (3) a significant correlation of [Z/H] with sigma, in a manner consistent with the observed B-V colors of the galaxies; (4) no significant correlation of [alpha/Fe] with sigma; and (5) a significant anti-correlation of [alpha/N] with [Z/H], which we interpret as the signature of secondary nitrogen. Neither [alpha/C], nor [alpha/Ca] shows significant variation. While the differences between our conclusions and the current view of stellar populations may point to serious deficiencies, our deduced correlation of mean metallicity with sigma does reproduce the B-V colors of the galaxies, as well as the slope of the local Mg-sigma relation. In matching the inferred population trends with published data on nearby galaxies, the line strength-line width relations match well, save for the narrow iron indices. Taken together, these results reduce early-type galaxies in clusters to a family with one-parameter, velocity dispersion, greatly simplifying scenarios for their formation and evolution.Comment: Accepted for publication in ApJ. 15 figures. (the new version has had some very minor changes, and some more typographical errors fixed

    Spectroscopic Confirmation of Multiple Red Galaxy-Galaxy Mergers in MS1054-03 (z=0.83)

    Full text link
    We present follow-up spectroscopy of the galaxy cluster MS1054-03 (z=0.83) confirming that at least six of the nine merging galaxy pairs identified by van Dokkum et al. (1999) are indeed bound systems: they have projected separations of R_s<10 kpc and relative line-of sight velocities of dv<165 km/s. For the remaining three pairs, we were unable to obtain redshifts of both constituent galaxies. To identify a more objective sample of merging systems, we select bound red galaxy pairs (R_s<=30 kpc, dv<=300 km/s) from our sample of 121 confirmed cluster members: galaxies in bound red pairs make up 15.7+/-3.6% of the cluster population. The (B-K_s) color-magnitude diagram shows that the pair galaxies are as red as the E/S0 members and have a homogeneous stellar population. The red pair galaxies span a large range in luminosity and internal velocity dispersion to include some of the brightest, most massive members (L>L*, sigma>200 km/s); these bound galaxy pairs must evolve into E/S0 members by z~0.7. These results combined with MS1054's high merger fraction and reservoir of likely future mergers indicates that most, if not all, of its early-type members evolved from (passive) galaxy-galaxy mergers at z<~1.Comment: accepted by ApJ Letters; high resolution version of Fig. 2 available at http://www.exp-astro.phys.ethz.ch/tran/outgoing/ms1054mgrs.ps.g

    Optical Spectroscopy of Distant Red Galaxies

    Full text link
    We present optical spectroscopic follow-up of a sample of Distant Red Galaxies (DRGs) with K 2.3, in the Hubble Deep Field South, the MS 1054-03 field, and the Chandra Deep Field South. Spectroscopic redshifts were obtained for 15 DRGs. Only 2 out of 15 DRGs are located at z < 2, suggesting a high efficiency to select high-redshift sources. From other spectroscopic surveys in the CDFS targeting intermediate to high redshift populations selected with different criteria, we find spectroscopic redshifts for a further 30 DRGs. We use the sample of spectroscopically confirmed DRGs to establish the high quality (scatter in \Delta z/(1+z) of ~ 0.05) of their photometric redshifts in the considered deep fields, as derived with EAZY (Brammer et al. 2008). Combining the spectroscopic and photometric redshifts, we find that 74% of DRGs with K 2. The combined spectroscopic and photometric sample is used to analyze the distinct intrinsic and observed properties of DRGs at z 2. In our photometric sample to K < 22.5, low-redshift DRGs are brighter in K than high-redshift DRGs by 0.7 mag, and more extincted by 1.2 mag in Av. Our analysis shows that the DRG criterion selects galaxies with different properties at different redshifts. Such biases can be largely avoided by selecting galaxies based on their rest-frame properties, which requires very good multi-band photometry and high quality photometric redshifts.Comment: Accepted for publication in the Astrophysical Journal, 13 pages, 8 figures, 5 table
    corecore