348 research outputs found
Surface Analysis of OFE-Copper X-Band Accelerating Structures and Possible Correlation to RF Breakdown Events
X-band accelerator structures meeting the Next Linear Collider (NLC) design
requirements have been found to suffer vacuum surface damage caused by radio
frequency (RF) breakdown, when processed to high electric-field gradients.
Improved understanding of these breakdown events is desirable for the
development of structure designs, fabrication procedures, and processing
techniques that minimize structure damage. RF reflected wave analysis and
acoustic sensor pickup have provided breakdowns localization in RF structures.
Particle contaminations found following clean autopsy of four RF-processed
travelling wave structures, have been catalogued and analyzed. Their influence
on RF breakdown, as well as that of several other material-based properties,
will be discussed.Comment: 21 pages, 8 figures, 4 tables, Submitted to JVST A as a proceeding of
the 50th AVS conference (Baltimore, MD, 2-7 Nov 2003
Atomic Hydrogen Cleaning of Polarized GaAs Photocathodes
Atomic hydrogen cleaning followed by heat cleaning at 450C was used
to prepare negative-electron-affinity GaAs photocathodes. When hydrogen ions
were eliminated, quantum efficiencies of 15% were obtained for bulk GaAs
cathodes, higher than the results obtained using conventional 600C heat
cleaning. The low-temperature cleaning technique was successfully applied to
thin, strained GaAs cathodes used for producing highly polarized electrons. No
depolarization was observed even when the optimum cleaning time of about 30
seconds was extended by a factor of 100
Dependence of Maximum Trappable Field on Superconducting Nb3Sn Cylinder Wall Thickness
Uniform dipole magnetic fields from 1.9 to 22.4 kOe were permanently trapped,
with high fidelity to the original field, transversely to the axes of hollow
Nb3Sn superconducting cylinders. These cylinders were constructed by helically
wrapping multiple layers of superconducting ribbon around a mandrel. This is
the highest field yet trapped, the first time trapping has been reported in
such helically wound taped cylinders, and the first time the maximum trappable
field has been experimentally determined as a function of cylinder wall
thickness.Comment: 8 pages, 4 figures, 1 table. PACS numbers: 74.60.Ge, 74.70.Ps,
41.10.Fs, 85.25.+
Pion-Muon Asymmetry Revisited
Long ago an unexpected and unexplainable phenomena was observed. The
distribution of muons from positive pion decay at rest was anisotropic with an
excess in the backward direction relative to the direction of the proton beam
from which the pions were created. Although this effect was observed by several
different groups with pions produced by different means, the result was not
accepted by the physics community, because it is in direct conflict with a
large set of other experiments indicating that the pion is a pseudoscalar
particle. It is possible to satisfy both sets of experiments if helicity-zero
vector particles exist and the pion is such a particle. Helicity-zero vector
particles have direction but no net spin. For the neutral pion to be a vector
particle requires an additional modification to conventional theory as
discussed herein. An experiment is proposed which can prove that the asymmetry
in the distribution of muons from pion decay is a genuine physical effect
because the asymmetry can be modified in a controllable manner. A positive
result will also prove that the pion is NOT a pseudoscalar particle.Comment: 9 pages, 3 figure
Nuclear Magnetic Quadrupole Moments in Single Particle Approximation
A static magnetic quadrupole moment of a nucleus, induced by T- and P-odd
nucleon-nucleon interaction, is investigated in the single-particle
approximation. Models are considered allowing for analytical solution. The
problem is also treated numerically in a Woods-Saxon potential with spin-orbit
interaction. The stability of results is discussed.Comment: LATEX, 9 pages, 1 postscript figure available upon request from
"[email protected]". BINP 94-4
Fast Diffusion Process in Quenched hcp Dilute Solid He-He Mixture
The study of phase structure of dilute He - He solid mixture of
different quality is performed by spin echo NMR technique. The diffusion
coefficient is determined for each coexistent phase. Two diffusion processes
are observed in rapidly quenched (non-equilibrium) hcp samples: the first
process has a diffusion coefficient corresponding to hcp phase, the second one
has huge diffusion coefficient corresponding to liquid phase. That is evidence
of liquid-like inclusions formation during fast crystal growing. It is
established that these inclusions disappear in equilibrium crystals after
careful annealing.Comment: 7 pages, 3 figures, QFS200
Critical Review of Theoretical Models for Anomalous Effects (Cold Fusion) in Deuterated Metals
We briefly summarize the reported anomalous effects in deuterated metals at
ambient temperature, commonly known as "Cold Fusion" (CF), with an emphasis on
important experiments as well as the theoretical basis for the opposition to
interpreting them as cold fusion. Then we critically examine more than 25
theoretical models for CF, including unusual nuclear and exotic chemical
hypotheses. We conclude that they do not explain the data.Comment: 51 pages, 4 Figure
- …
