587 research outputs found

    Synthesis and characterisation of conjugated 4,8-benzobisthiazole derivatives for organic electronics

    Get PDF
    This thesis was previously held under moratorium from 27th July 2015 until 27th July 2017.In recent years the field of organic semiconducting materials has seen rapid growth and development, with keen interest from both industrial and academic research. In the early stages of development, much of the performance improvements were due to increasingly complex device fabrication and processing methods. Research focused greatly on improving known semiconducting materials such as PPV, PT or PAC. Whilst these materials formed a strong foundation for early research, recent findings suggest that they do not possess the optimum chemical properties in order to achieve ultra-high efficiency devices. As such many research groups are now focusing efforts to develop sophisticated building blocks for incorporation into conjugated macromolecules and polymers. In order for these building blocks to find use as electronic materials, it is important to understand the intrinsic properties of each component and use these to derive effective structure-property relationships for use as tools in creating materials which are tailored to a particular role.Chapter 1 includes a summarized description of band theory and the underlying physics of organic semiconducting materials, followed by a discussion of the recent technologies within the field, in particular donor-acceptor type macromolecules and polymers and their related device structures.Chapters 2, 3 and 4 then present novel 4,8-benzobisthiazole (BBT) containing analogues and their incorporation into functional electronic devices. Chapter 2 discusses the synthesis and functionalization of the unit BBT, and development of an orthogonal conjugation pathway. The effect of non-covalent heteroatom interactions - utilized to induce molecular planarity - are then discussed. Building on from Chapter 2, Chapter 3 discusses the synthesis, characterization and device applications of highly-planarised, 4,8-BBT containing polymeric materials. Furthermore, Chapter 4 discusses the synthesis, characterization and device applications of 4,8-BBT containing, donor-acceptor polymers synthesised analogously to that of literature 2,6-BBT polymers. Comparison of physical and electrochemical properties, as well as device performance has been conducted and utilised to confirm the beneficial characteristics of the 4,8-orientation vs. the traditional 2,6-substitution.In recent years the field of organic semiconducting materials has seen rapid growth and development, with keen interest from both industrial and academic research. In the early stages of development, much of the performance improvements were due to increasingly complex device fabrication and processing methods. Research focused greatly on improving known semiconducting materials such as PPV, PT or PAC. Whilst these materials formed a strong foundation for early research, recent findings suggest that they do not possess the optimum chemical properties in order to achieve ultra-high efficiency devices. As such many research groups are now focusing efforts to develop sophisticated building blocks for incorporation into conjugated macromolecules and polymers. In order for these building blocks to find use as electronic materials, it is important to understand the intrinsic properties of each component and use these to derive effective structure-property relationships for use as tools in creating materials which are tailored to a particular role.Chapter 1 includes a summarized description of band theory and the underlying physics of organic semiconducting materials, followed by a discussion of the recent technologies within the field, in particular donor-acceptor type macromolecules and polymers and their related device structures.Chapters 2, 3 and 4 then present novel 4,8-benzobisthiazole (BBT) containing analogues and their incorporation into functional electronic devices. Chapter 2 discusses the synthesis and functionalization of the unit BBT, and development of an orthogonal conjugation pathway. The effect of non-covalent heteroatom interactions - utilized to induce molecular planarity - are then discussed. Building on from Chapter 2, Chapter 3 discusses the synthesis, characterization and device applications of highly-planarised, 4,8-BBT containing polymeric materials. Furthermore, Chapter 4 discusses the synthesis, characterization and device applications of 4,8-BBT containing, donor-acceptor polymers synthesised analogously to that of literature 2,6-BBT polymers. Comparison of physical and electrochemical properties, as well as device performance has been conducted and utilised to confirm the beneficial characteristics of the 4,8-orientation vs. the traditional 2,6-substitution

    Canine and feline cardiopulmonary parasitic nematodes in Europe: emerging and underestimated

    Get PDF
    Cardiopulmonary nematodes of dogs and cats cause parasitic diseases of central relevance in current veterinary practice. In the recent past the distribution of canine and feline heartworms and lungworms has increased in various geographical areas, including Europe. This is true especially for the metastrongyloids Aelurostrongylus abstrusus, Angiostrongylus vasorum and Crenosoma vulpis, the filarioid Dirofilaria immitis and the trichuroid Eucoleus aerophilus (syn. Capillaria aerophila). The reasons of this emergence are little known but many drivers such as global warming, changes in vector epidemiology and movements in animal populations, may be taken into account. The purpose of this article is to review the knowledge of the most important heartworm and lungworm infections of dogs and cats in Europe. In particular recent advances in epidemiology, clinical and control are described and discussed

    Novel 4,8-benzobisthiazole copolymers and their field-effect transistor and photovoltaic applications

    Get PDF
    We are grateful to the EPSRC for funding through grants C, EP/L012294/1, EP/L017008/1 and EP/L012200/1 and to the European Research Council for funding from Grant 321305. Supporting data are accessible from 10.15129/9b457e8c-12bc-4a3a-9af3-7f53474f4e5c.A series of copolymers containing the benzo[1,2-d:4,5-d′]bis(thiazole) (BBT) unit has been designed and synthesised with bisthienyl-diketopyrrolopyrrole (DPP), dithienopyrrole (DTP), benzothiadiazole (BT), benzodithiophene (BDT) or 4,4′-dialkoxybithiazole (BTz) comonomers. The resulting polymers possess a conjugation pathway that is orthogonal to the more usual substitution pathway through the 2,6-positions of the BBT unit, facilitating intramolecular non-covalent interactions between strategically placed heteroatoms of neighbouring monomer units. Such interactions enable a control over the degree of planarity through altering their number and strength, in turn allowing for tuning of the band gap. The resulting 4,8-BBT materials gave enhanced mobility in p-type organic field-effect transistors of up to 2.16 × 10-2 cm2 V-1 s-1 for pDPP2ThBBT and good solar cell performance of up to 4.45% power conversion efficiency for pBT2ThBBT.Publisher PDFPeer reviewe

    Modeling and experimental results for condensing supercritical CO2 power cycles.

    Get PDF
    This Sandia supported research project evaluated the potential improvement that 'condensing' supercritical carbon dioxide (S-CO{sub 2}) power cycles can have on the efficiency of Light Water Reactors (LWR). The analytical portion of research project identified that a S-CO{sub 2} 'condensing' re-compression power cycle with multiple stages of reheat can increase LWR power conversion efficiency from 33-34% to 37-39%. The experimental portion of the project used Sandia's S-CO{sub 2} research loop to show that the as designed radial compressor could 'pump' liquid CO{sub 2} and that the gas-cooler's could 'condense' CO{sub 2} even though both of these S-CO{sub 2} components were designed to operate on vapor phase S-CO{sub 2} near the critical point. There is potentially very high value to this research as it opens the possibility of increasing LWR power cycle efficiency, above the 33-34% range, while lowering the capital cost of the power plant because of the small size of the S-CO{sub 2} power system. In addition it provides a way to incrementally build advanced LWRs that are optimally designed to couple to S-CO{sub 2} power conversion systems to increase the power cycle efficiency to near 40%

    A Measurement of Rb using a Double Tagging Method

    Get PDF
    The fraction of Z to bbbar events in hadronic Z decays has been measured by the OPAL experiment using the data collected at LEP between 1992 and 1995. The Z to bbbar decays were tagged using displaced secondary vertices, and high momentum electrons and muons. Systematic uncertainties were reduced by measuring the b-tagging efficiency using a double tagging technique. Efficiency correlations between opposite hemispheres of an event are small, and are well understood through comparisons between real and simulated data samples. A value of Rb = 0.2178 +- 0.0011 +- 0.0013 was obtained, where the first error is statistical and the second systematic. The uncertainty on Rc, the fraction of Z to ccbar events in hadronic Z decays, is not included in the errors. The dependence on Rc is Delta(Rb)/Rb = -0.056*Delta(Rc)/Rc where Delta(Rc) is the deviation of Rc from the value 0.172 predicted by the Standard Model. The result for Rb agrees with the value of 0.2155 +- 0.0003 predicted by the Standard Model.Comment: 42 pages, LaTeX, 14 eps figures included, submitted to European Physical Journal

    Bose-Einstein Correlations of Three Charged Pions in Hadronic Z^0 Decays

    Get PDF
    Bose-Einstein Correlations (BEC) of three identical charged pions were studied in 4 x 10^6 hadronic Z^0 decays recorded with the OPAL detector at LEP. The genuine three-pion correlations, corrected for the Coulomb effect, were separated from the known two-pion correlations by a new subtraction procedure. A significant genuine three-pion BEC enhancement near threshold was observed having an emitter source radius of r_3 = 0.580 +/- 0.004 (stat.) +/- 0.029 (syst.) fm and a strength of \lambda_3 = 0.504 +/- 0.010 (stat.) +/- 0.041 (syst.). The Coulomb correction was found to increase the \lambda_3 value by \~9% and to reduce r_3 by ~6%. The measured \lambda_3 corresponds to a value of 0.707 +/- 0.014 (stat.) +/- 0.078 (syst.) when one takes into account the three-pion sample purity. A relation between the two-pion and the three-pion source parameters is discussed.Comment: 19 pages, LaTeX, 5 eps figures included, accepted by Eur. Phys. J.

    W+W- production and triple gauge boson couplings at LEP energies up to 183 GeV

    Get PDF
    A study of W-pair production in e+e- annihilations at Lep2 is presented, based on 877 W+W- candidates corresponding to an integrated luminosity of 57 pb-1 at sqrt(s) = 183 GeV. Assuming that the angular distributions of the W-pair production and decay, as well as their branching fractions, are described by the Standard Model, the W-pair production cross-section is measured to be 15.43 +- 0.61 (stat.) +- 0.26 (syst.) pb. Assuming lepton universality and combining with our results from lower centre-of-mass energies, the W branching fraction to hadrons is determined to be 67.9 +- 1.2 (stat.) +- 0.5 (syst.)%. The number of W-pair candidates and the angular distributions for each final state (qqlnu,qqqq,lnulnu) are used to determine the triple gauge boson couplings. After combining these values with our results from lower centre-of-mass energies we obtain D(kappa_g)=0.11+0.52-0.37, D(g^z_1)=0.01+0.13-0.12 and lambda=-0.10+0.13-0.12, where the errors include both statistical and systematic uncertainties and each coupling is determined setting the other two couplings to the Standard Model value. The fraction of W bosons produced with a longitudinal polarisation is measured to be 0.242+-0.091(stat.)+-0.023(syst.). All these measurements are consistent with the Standard Model expectations.Comment: 48 pages, LaTeX, including 13 eps or ps figures, submitted to European Physical Journal

    First Measurement of Z/gamma* Production in Compton Scattering of Quasi-real Photons

    Full text link
    We report the first observation of Z/gamma* production in Compton scattering of quasi-real photons. This is a subprocess of the reaction e+e- to e+e-Z/gamma*, where one of the final state electrons is undetected. Approximately 55 pb-1 of data collected in the year 1997 at an e+e- centre-of-mass energy of 183 GeV with the OPAL detector at LEP have been analysed. The Z/gamma* from Compton scattering has been detected in the hadronic decay channel. Within well defined kinematic bounds, we measure the product of cross-section and Z/gamma* branching ratio to hadrons to be (0.9+-0.3+-0.1) pb for events with a hadronic mass larger than 60 GeV, dominated by (e)eZ production. In the hadronic mass region between 5 GeV and 60 GeV, dominated by (e)egamma* production, this product is found to be (4.1+-1.6+-0.6) pb. Our results agree with the predictions of two Monte Carlo event generators, grc4f and PYTHIA.Comment: 18 pages, LaTeX, 5 eps figures included, submitted to Physics Letters

    Measurement of the B+ and B-0 lifetimes and search for CP(T) violation using reconstructed secondary vertices

    Get PDF
    The lifetimes of the B+ and B-0 mesons, and their ratio, have been measured in the OPAL experiment using 2.4 million hadronic Z(0) decays recorded at LEP. Z(0) --> b (b) over bar decays were tagged using displaced secondary vertices and high momentum electrons and muons. The lifetimes were then measured using well-reconstructed charged and neutral secondary vertices selected in this tagged data sample. The results aretau(B+) = 1.643 +/- 0.037 +/- 0.025 pstau(Bo) = 1.523 +/- 0.057 +/- 0.053 pstau(B+)/tau(Bo) = 1.079 +/- 0.064 +/- 0.041,where in each case the first error is statistical and the second systematic.A larger data sample of 3.1 million hadronic Z(o) decays has been used to search for CP and CPT violating effects by comparison of inclusive b and (b) over bar hadron decays, No evidence fur such effects is seen. The CP violation parameter Re(epsilon(B)) is measured to be Re(epsilon(B)) = 0.001 +/- 0.014 +/- 0.003and the fractional difference between b and (b) over bar hadron lifetimes is measured to(Delta tau/tau)(b) = tau(b hadron) - tau((b) over bar hadron)/tau(average) = -0.001 +/- 0.012 +/- 0.008
    corecore