325 research outputs found
Fiber-Flux Diffusion Density for White Matter Tracts Analysis: Application to Mild Anomalies Localization in Contact Sports Players
We present the concept of fiber-flux density for locally quantifying white
matter (WM) fiber bundles. By combining scalar diffusivity measures (e.g.,
fractional anisotropy) with fiber-flux measurements, we define new local
descriptors called Fiber-Flux Diffusion Density (FFDD) vectors. Applying each
descriptor throughout fiber bundles allows along-tract coupling of a specific
diffusion measure with geometrical properties, such as fiber orientation and
coherence. A key step in the proposed framework is the construction of an FFDD
dissimilarity measure for sub-voxel alignment of fiber bundles, based on the
fast marching method (FMM). The obtained aligned WM tract-profiles enable
meaningful inter-subject comparisons and group-wise statistical analysis. We
demonstrate our method using two different datasets of contact sports players.
Along-tract pairwise comparison as well as group-wise analysis, with respect to
non-player healthy controls, reveal significant and spatially-consistent FFDD
anomalies. Comparing our method with along-tract FA analysis shows improved
sensitivity to subtle structural anomalies in football players over standard FA
measurements
Learning-based Ensemble Average Propagator Estimation
By capturing the anisotropic water diffusion in tissue, diffusion magnetic
resonance imaging (dMRI) provides a unique tool for noninvasively probing the
tissue microstructure and orientation in the human brain. The diffusion profile
can be described by the ensemble average propagator (EAP), which is inferred
from observed diffusion signals. However, accurate EAP estimation using the
number of diffusion gradients that is clinically practical can be challenging.
In this work, we propose a deep learning algorithm for EAP estimation, which is
named learning-based ensemble average propagator estimation (LEAPE). The EAP is
commonly represented by a basis and its associated coefficients, and here we
choose the SHORE basis and design a deep network to estimate the coefficients.
The network comprises two cascaded components. The first component is a
multiple layer perceptron (MLP) that simultaneously predicts the unknown
coefficients. However, typical training loss functions, such as mean squared
errors, may not properly represent the geometry of the possibly non-Euclidean
space of the coefficients, which in particular causes problems for the
extraction of directional information from the EAP. Therefore, to regularize
the training, in the second component we compute an auxiliary output of
approximated fiber orientation (FO) errors with the aid of a second MLP that is
trained separately. We performed experiments using dMRI data that resemble
clinically achievable -space sampling, and observed promising results
compared with the conventional EAP estimation method.Comment: Accepted by MICCAI 201
Evaluating 35 Methods to Generate Structural Connectomes Using Pairwise Classification
There is no consensus on how to construct structural brain networks from
diffusion MRI. How variations in pre-processing steps affect network
reliability and its ability to distinguish subjects remains opaque. In this
work, we address this issue by comparing 35 structural connectome-building
pipelines. We vary diffusion reconstruction models, tractography algorithms and
parcellations. Next, we classify structural connectome pairs as either
belonging to the same individual or not. Connectome weights and eight
topological derivative measures form our feature set. For experiments, we use
three test-retest datasets from the Consortium for Reliability and
Reproducibility (CoRR) comprised of a total of 105 individuals. We also compare
pairwise classification results to a commonly used parametric test-retest
measure, Intraclass Correlation Coefficient (ICC).Comment: Accepted for MICCAI 2017, 8 pages, 3 figure
Non local spatial and angular matching : enabling higher spatial resolution diffusion MRI datasets through adaptive denoising
Diffusion magnetic resonance imaging (MRI) datasets suffer from low Signal-to-Noise Ratio (SNR), especially at high b-values. Acquiring data at high b-values contains relevant information and is now of great interest for microstructural and connectomics studies. High noise levels bias the measurements due to the non-Gaussian nature of the noise, which in turn can lead to a false and biased estimation of the diffusion parameters. Additionally, the usage of in-plane acceleration techniques during the acquisition leads to a spatially varying noise distribution, which depends on the parallel acceleration method implemented on the scanner. This paper proposes a novel diffusion MRI denoising technique that can be used on all existing data, without adding to the scanning time. We first apply a statistical framework to convert both stationary and non stationary Rician and non central Chi distributed noise to Gaussian distributed noise, effectively removing the bias. We then introduce a spatially and angular adaptive denoising technique, the Non Local Spatial and Angular Matching (NLSAM) algorithm. Each volume is first decomposed in small 4D overlapping patches, thus capturing the spatial and angular structure of the diffusion data, and a dictionary of atoms is learned on those patches. A local sparse decomposition is then found by bounding the reconstruction error with the local noise variance. We compare against three other state-of-the-art denoising methods and show quantitative local and connectivity results on a synthetic phantom and on an in-vivo high resolution dataset. Overall, our method restores perceptual information, removes the noise bias in common diffusion metrics, restores the extracted peaks coherence and improves reproducibility of tractography on the synthetic dataset. On the 1.2 mm high resolution in-vivo dataset, our denoising improves the visual quality of the data and reduces the number of spurious tracts when compared to the noisy acquisition. Our work paves the way for higher spatial resolution acquisition of diffusion MRI datasets, which could in turn reveal new anatomical details that are not discernible at the spatial resolution currently used by the diffusion MRI community
Multi-view fusion of diffusion MRI microstructural models: a preterm birth study
Objective High Angular Resolution Diffusion Imaging (HARDI) models have emerged as a valuable tool for investigating microstructure with a higher degree of detail than standard diffusion Magnetic Resonance Imaging (dMRI). In this study, we explored the potential of multiple advanced microstructural diffusion models for investigating preterm birth in order to identify non-invasive markers of altered white matter development.Approach Rather than focusing on a single MRI modality, we studied on a compound of HARDI techniques in 46 preterm babies studied on a 3T scanner at term-equivalent age and in 23 control neonates born at term. Furthermore, we investigated discriminative patterns of preterm birth using multiple analysis methods, drawn from two only seemingly divergent modeling goals, namely inference and prediction. We thus resorted to (i) a traditional univariate voxel-wise inferential method, as the Tract-Based Spatial Statistics (TBSS) approach; (ii) a univariate predictive approach, as the Support Vector Machine (SVM) classification; and (iii) a multivariate predictive Canonical Correlation Analysis (CCA).Main results The TBSS analysis revealed significant differences between preterm and term cohorts in several white matter areas for multiple HARDI features. SVM classification on skeletonized HARDI measures yielded satisfactory accuracy, particularly for highly informative parameters about fiber directionality. Assessment of the degree of overlap between the two methods in voting for the most discriminating features exhibited a good, though parameter-dependent, rate of agreement. Finally, CCA identified joint changes precisely for those measures exhibiting less correspondence between TBSS and SVM.Significance Our results suggest that a data-driven intramodal imaging approach is crucial for gathering deep and complementary information. The main contribution of this methodological outline is to thoroughly investigate prematurity-related white matter changes through different inquiry focuses, with a view to addressing this issue, both aiming toward mechanistic insight and optimizing predictive accuracy
Diffusional Kurtosis Imaging in the Diffusion Imaging in Python Project.
Diffusion-weighted magnetic resonance imaging (dMRI) measurements and models provide information about brain connectivity and are sensitive to the physical properties of tissue microstructure. Diffusional Kurtosis Imaging (DKI) quantifies the degree of non-Gaussian diffusion in biological tissue from dMRI. These estimates are of interest because they were shown to be more sensitive to microstructural alterations in health and diseases than measures based on the total anisotropy of diffusion which are highly confounded by tissue dispersion and fiber crossings. In this work, we implemented DKI in the Diffusion in Python (DIPY) project-a large collaborative open-source project which aims to provide well-tested, well-documented and comprehensive implementation of different dMRI techniques. We demonstrate the functionality of our methods in numerical simulations with known ground truth parameters and in openly available datasets. A particular strength of our DKI implementations is that it pursues several extensions of the model that connect it explicitly with microstructural models and the reconstruction of 3D white matter fiber bundles (tractography). For instance, our implementations include DKI-based microstructural models that allow the estimation of biophysical parameters, such as axonal water fraction. Moreover, we illustrate how DKI provides more general characterization of non-Gaussian diffusion compatible with complex white matter fiber architectures and gray matter, and we include a novel mean kurtosis index that is invariant to the confounding effects due to tissue dispersion. In summary, DKI in DIPY provides a well-tested, well-documented and comprehensive reference implementation for DKI. It provides a platform for wider use of DKI in research on brain disorders and in cognitive neuroscience
What's new and what's next in diffusion MRI preprocessing
Diffusion MRI (dMRI) provides invaluable information for the study of tissue microstructure and brain connectivity, but suffers from a range of imaging artifacts that greatly challenge the analysis of results and their interpretability if not appropriately accounted for. This review will cover dMRI artifacts and preprocessing steps, some of which have not typically been considered in existing pipelines or reviews, or have only gained attention in recent years: brain/skull extraction, B-matrix incompatibilities w.r.t the imaging data, signal drift, Gibbs ringing, noise distribution bias, denoising, between- and within-volumes motion, eddy currents, outliers, susceptibility distortions, EPI Nyquist ghosts, gradient deviations, bias fields, and spatial normalization. The focus will be on “what’s new” since the notable advances prior to and brought by the Human Connectome Project (HCP), as presented in the predecessing issue on “Mapping the Connectome” in 2013. In addition to the development of novel strategies for dMRI preprocessing, exciting progress has been made in the availability of open source tools and reproducible pipelines, databases and simulation tools for the evaluation of preprocessing steps, and automated quality control frameworks, amongst others. Finally, this review will consider practical considerations and our view on “what’s next” in dMRI preprocessing
Evaluating the Reliability of Human Brain White Matter Tractometry
Published Nov 17, 2021The validity of research results depends on the reliability of analysis methods. In recent years, there have been concerns about the validity of research that uses diffusion-weighted MRI (dMRI) to understand human brain white matter connections in vivo, in part based on the reliability of analysis methods used in this field. We defined and assessed three dimensions of reliability in dMRI-based tractometry, an analysis technique that assesses the physical properties of white matter pathways: (1) reproducibility, (2) test-retest reliability, and (3) robustness. To facilitate reproducibility, we provide software that automates tractometry (https://yeatmanlab.github.io/pyAFQ). In measurements from the Human Connectome Project, as well as clinical-grade measurements, we find that tractometry has high test-retest reliability that is comparable to most standardized clinical assessment tools. We find that tractometry is also robust: showing high reliability with different choices of analysis algorithms. Taken together, our results suggest that tractometry is a reliable approach to analysis of white matter connections. The overall approach taken here both demonstrates the specific trustworthiness of tractometry analysis and outlines what researchers can do to establish the reliability of computational analysis pipelines in neuroimaging.This work was supported through grant 1RF1MH121868-
01 from the National Institute of Mental Health/the BRAIN
Initiative, through grant 5R01EB027585-02 to Eleftherios
Garyfallidis (Indiana University) from the National Institute
of Biomedical Imaging and Bioengineering, through Azure
Cloud Computing Credits for Research & Teaching provided
through the University of Washington’s Research
Computing unit and the University of Washington eScience
Institute, and NICHD R21HD092771 to Jason D. Yeatma
- …
