564 research outputs found
Light sterile neutrino sensitivity of 163Ho experiments
We explore the sensitivity of Ho electron capture experiments to
neutrino masses in the standard framework of three-neutrino mixing and in the
framework of 3+1 neutrino mixing with a sterile neutrino which mixes with the
three standard active neutrinos, as indicated by the anomalies found in
short-baseline neutrino oscillations experiments. We calculate the sensitivity
to neutrino masses and mixing for different values of the energy resolution of
the detectors, of the unresolved pileup fraction and of the total statistics of
events, considering the expected values of these parameters in the two planned
stages of the ECHo project (ECHo-1k and ECHo-1M). We show that an extension of
the ECHo-1M experiment with the possibility to collect events will be
competitive with the KATRIN experiment. This statistics will allow to explore
part of the 3+1 mixing parameter space indicated by the global analysis of
short-baseline neutrino oscillation experiments. In order to cover all the
allowed region, a statistics of about events will be needed.Comment: 11 page
On the keV sterile neutrino search in electron capture
A joint effort of cryogenic microcalorimetry (CM) and high-precision
Penning-trap mass spectrometry (PT-MS) in investigating atomic orbital electron
capture (EC) can shed light on the possible existence of heavy sterile
neutrinos with masses from 0.5 to 100 keV. Sterile neutrinos are expected to
perturb the shape of the atomic de-excitation spectrum measured by CM after a
capture of the atomic orbital electrons by a nucleus. This effect should be
observable in the ratios of the capture probabilities from different orbits.
The sensitivity of the ratio values to the contribution of sterile neutrinos
strongly depends on how accurately the mass difference between the parent and
the daughter nuclides of EC-transitions can be measured by, e.g., PT-MS. A
comparison of such probability ratios in different isotopes of a certain
chemical element allows one to exclude many systematic uncertainties and thus
could make feasible a determination of the contribution of sterile neutrinos on
a level below 1%. Several electron capture transitions suitable for such
measurements are discussed.Comment: 16 pages, 9 figures, 2 table
Sponge-Like Behaviour in Isoreticular Cu(Gly-His-X) Peptide-Based Porous Materials
We report two isoreticular 3D peptide-based porous frameworks formed by coordination of the tripeptides Gly-l-His-Gly and Gly-l-His-l-Lys to Cu(II) which display sponge-like behaviour. These porous materials undergo structural collapse upon evacuation that can be reversed by exposure to water vapour, which permits recovery of the original open channel structure. This is further confirmed by sorption studies that reveal that both solids exhibit selective sorption of H(2)O while CO(2) adsorption does not result in recovery of the original structures. We also show how the pendant aliphatic amine chains, present in the framework from the introduction of the lysine amino acid in the peptidic backbone, can be post-synthetically modified to produce urea-functionalised networks by following methodologies typically used for metal–organic frameworks built from more rigid “classical” linkers
The Microcalorimeter Arrays for a Rhenium Experiment (MARE): a next-generation calorimetric neutrino mass experiment
Neutrino oscillation experiments have proved that neutrinos are massive
particles, but can't determine their absolute mass scale. Therefore the
neutrino mass is still an open question in elementary particle physics. An
international collaboration is growing around the project of Microcalorimeter
Arrays for a Rhenium Experiment (MARE) for directly measuring the neutrino mass
with a sensitivity of about 0.2eV/c2. Many groups are joining their experiences
and technical expertise in a common effort towards this challenging experiment.
We discuss the different scenarios and the impact of MARE as a complement of
KATRIN.Comment: 3 pages, 1 figure Nucl. Instr. Meth. A, proceedings of LTD11
workshop, Tokyo 200
The Future of Neutrino Mass Measurements: Terrestrial, Astrophysical, and Cosmological Measurements in the Next Decade. Highlights of the NuMass 2013 Workshop. Milano, Italy, February 4 - 7, 2013
The third Workshop of the NuMass series ("The Future of Neutrino Mass
Measurements: Terrestrial, Astrophysical, and Cosmological Measurements in the
Next Decade: NuMass 2013") was held at Dipartimento di Fisica "G. Occhialini,
University of Milano-Bicocca in Milano, Italy, on 4-7 February 2013. The goal
of this international workshop was to review the status and future of direct
and indirect neutrino mass measurements in the laboratory as well as from
astrophysical and cosmological observations. This paper collects most of the
contributions presented during the Workshop
A survey on deep learning in image polarity detection: Balancing generalization performances and computational costs
Deep convolutional neural networks (CNNs) provide an effective tool to extract complex information from images. In the area of image polarity detection, CNNs are customarily utilized in combination with transfer learning techniques to tackle a major problem: the unavailability of large sets of labeled data. Thus, polarity predictors in general exploit a pre-trained CNN as the feature extractor that in turn feeds a classification unit. While the latter unit is trained from scratch, the pre-trained CNN is subject to fine-tuning. As a result, the specific CNN architecture employed as the feature extractor strongly affects the overall performance of the model. This paper analyses state-of-the-art literature on image polarity detection and identifies the most reliable CNN architectures. Moreover, the paper provides an experimental protocol that should allow assessing the role played by the baseline architecture in the polarity detection task. Performance is evaluated in terms of both generalization abilities and computational complexity. The latter attribute becomes critical as polarity predictors, in the era of social networks, might need to be updated within hours or even minutes. In this regard, the paper gives practical hints on the advantages and disadvantages of the examined architectures both in terms of generalization and computational cost
Proceedings of the third French-Ukrainian workshop on the instrumentation developments for HEP
The reports collected in these proceedings have been presented in the third
French-Ukrainian workshop on the instrumentation developments for high-energy
physics held at LAL, Orsay on October 15-16. The workshop was conducted in the
scope of the IDEATE International Associated Laboratory (LIA). Joint
developments between French and Ukrainian laboratories and universities as well
as new proposals have been discussed. The main topics of the papers presented
in the Proceedings are developments for accelerator and beam monitoring,
detector developments, joint developments for large-scale high-energy and
astroparticle physics projects, medical applications.Comment: 3rd French-Ukrainian workshop on the instrumentation developments for
High Energy Physics, October 15-16, 2015, LAL, Orsay, France, 94 page
First Results from the AMoRE-Pilot neutrinoless double beta decay experiment
The Advanced Molybdenum-based Rare process Experiment (AMoRE) aims to search
for neutrinoless double beta decay (0) of Mo with
100 kg of Mo-enriched molybdenum embedded in cryogenic detectors
with a dual heat and light readout. At the current, pilot stage of the AMoRE
project we employ six calcium molybdate crystals with a total mass of 1.9 kg,
produced from Ca-depleted calcium and Mo-enriched molybdenum
(CaMoO). The simultaneous detection of
heat(phonon) and scintillation (photon) signals is realized with high
resolution metallic magnetic calorimeter sensors that operate at milli-Kelvin
temperatures. This stage of the project is carried out in the Yangyang
underground laboratory at a depth of 700 m. We report first results from the
AMoRE-Pilot search with a 111 kgd live exposure of
CaMoO crystals. No evidence for
decay of Mo is found, and a upper limit is set for the
half-life of 0 of Mo of y at 90% C.L.. This limit corresponds to an effective
Majorana neutrino mass limit in the range eV
- …
