545 research outputs found
Electroelasticity of Charged Black Branes
We present the first-order corrected dynamics of fluid branes carrying
higher-form charge by obtaining the general form of their equations of motion
to pole-dipole order. Assuming linear response theory, we characterize the
corresponding effective theory of stationary bent charged (an)isotropic fluid
branes in terms of two sets of response coefficients, the Young modulus and the
piezoelectric moduli. We subsequently find large classes of examples in gravity
of this effective theory, by constructing stationary strained charged black
brane solutions to first order in a derivative expansion. Using solution
generating techniques and bent neutral black branes as a seed solution, we
obtain a class of charged black brane geometries carrying smeared Maxwell
charge in Einstein-Maxwell-dilaton gravity. In the specific case of
ten-dimensional space-time we furthermore use T-duality to generate bent black
branes with higher-form charge, including smeared D-branes of type II string
theory. By subsequently measuring the bending moment and the electric dipole
moment which these geometries acquire due to the strain, we uncover that their
form is captured by classical electroelasticity theory. In particular, we find
that the Young modulus and the piezoelectric moduli of our strained charged
black brane solutions are parameterized by a total of 4 response coefficients,
both for the isotropic as well as anisotropic cases.Comment: v2: 40pp; typos fixe
Black Branes as Piezoelectrics
We find a realization of linear electroelasticity theory in gravitational
physics by uncovering a new response coefficient of charged black branes,
exhibiting their piezoelectric behavior. Taking charged dilatonic black strings
as an example and using the blackfold approach we measure their elastic and
piezolectric moduli. We also use our results to draw predictions about the
equilibrium condition of charged dilatonic black rings in dimensions higher
than six.Comment: v2: 9 pages; important sign corrections in section 3 and other minor
corrections; published in PR
Holographic Models for Theories with Hyperscaling Violation
We study in detail a variety of gravitational toy models for
hyperscaling-violating Lifshitz (hvLif) space-times. These space-times have
been recently explored as holographic dual models for condensed matter systems.
We start by considering a model of gravity coupled to a massive vector field
and a dilaton with a potential. This model supports the full class of hvLif
space-times and special attention is given to the particular values of the
scaling exponents appearing in certain non-Fermi liquids. We study linearized
perturbations in this model, and consider probe fields whose interactions mimic
those of the perturbations. The resulting equations of motion for the probe
fields are invariant under the Lifshitz scaling. We derive
Breitenlohner-Freedman-type bounds for these new probe fields. For the cases of
interest the hvLif space-times have curvature invariants that blow up in the
UV. We study the problem of constructing models in which the hvLif space-time
can have an AdS or Lifshitz UV completion. We also analyze reductions of
Schroedinger space-times and reductions of waves on extremal (intersecting)
branes, accompanied by transverse space reductions, that are solutions to
supergravity-like theories, exploring the allowed parameter range of the hvLif
scaling exponents.Comment: version 3: matches published versio
Universal scaling properties of extremal cohesive holographic phases
We show that strongly-coupled, translation-invariant holographic IR phases at
finite density can be classified according to the scaling behaviour of the
metric, the electric potential and the electric flux introducing four critical
exponents, independently of the details of the setup. Solutions fall into two
classes, depending on whether they break relativistic symmetry or not. The
critical exponents determine key properties of these phases, like thermodynamic
stability, the (ir)relevant deformations around them, the low-frequency scaling
of the optical conductivity and the nature of the spectrum for electric
perturbations. We also study the scaling behaviour of the electric flux through
bulk minimal surfaces using the Hartnoll-Radicevic order parameter, and
characterize the deviation from the Ryu-Takayanagi prescription in terms of the
critical exponents.Comment: v4: corrected a typo in eqn (3.29), now (3.28). Conclusions unchange
The bimodality of the 10k zCOSMOS-bright galaxies up to z ~ 1: a new statistical and portable classification based on the optical galaxy properties
Our goal is to develop a new and reliable statistical method to classify
galaxies from large surveys. We probe the reliability of the method by
comparing it with a three-dimensional classification cube, using the same set
of spectral, photometric and morphological parameters.We applied two different
methods of classification to a sample of galaxies extracted from the zCOSMOS
redshift survey, in the redshift range 0.5 < z < 1.3. The first method is the
combination of three independent classification schemes, while the second
method exploits an entirely new approach based on statistical analyses like
Principal Component Analysis (PCA) and Unsupervised Fuzzy Partition (UFP)
clustering method. The PCA+UFP method has been applied also to a lower redshift
sample (z < 0.5), exploiting the same set of data but the spectral ones,
replaced by the equivalent width of H. The comparison between the two
methods shows fairly good agreement on the definition on the two main clusters,
the early-type and the late-type galaxies ones. Our PCA-UFP method of
classification is robust, flexible and capable of identifying the two main
populations of galaxies as well as the intermediate population. The
intermediate galaxy population shows many of the properties of the green valley
galaxies, and constitutes a more coherent and homogeneous population. The
fairly large redshift range of the studied sample allows us to behold the
downsizing effect: galaxies with masses of the order of Msun
mainly are found in transition from the late type to the early type group at
, while galaxies with lower masses - of the order of Msun -
are in transition at later epochs; galaxies with Msun did not
begin their transition yet, while galaxies with very large masses ( Msun) mostly completed their transition before .Comment: 16 pages, 14 figures, accepted for publication in A&
Spatially modulated instabilities of geometries with hyperscaling violation
We perform a study of possible instabilities of the infrared AdS(2) x R-2 region of solutions to Einstein-Maxwell-dilaton systems which exhibit an intermediate regime of hyperscaling violation and Lifshitz scaling. Focusing on solutions that are magnetically charged, we probe the response of the system to spatially modulated fluctuations, and identify regions of parameter space in which the infrared AdS(2) geometry is unstable to perturbations. The conditions for the existence of instabilities translate to restrictions on the structure of the gauge kinetic function and scalar potential. In turn, these can lead to restrictions on the dynamical critical exponent z and on the amount of hyperscaling violation theta. Our analysis thus provides further evidence for the notion that the true ground state of 'scaling' solutions with hyperscaling violation may be spatially modulated phases
Temporal patterns of inflammatory gene expression in local tissues after banding or burdizzo castration in cattle
peer-reviewedBackground: Castration of male cattle has been shown to elicit inflammatory reactions and acute inflammation is initiated and sustained by the participation of cytokines. Methods: Sixty continental × beef bulls (Mean age 12 ± (s.e.) 0.2 months; Mean weight 341 ± (s.e.) 3.0 kg) were blocked by weight and randomly assigned to one of three treatments (n = 20 animals per treatment): 1) untreated control (Con); 2) banding castration at 0 min (Band); 3) Burdizzo castration at 0 min (Burd). Samples of the testis, epididymis and scrotal skin were collected surgically from 5 animals from each group at 12 h, 24 h, 7 d, and 14 d post-treatment, and analysed using real-time PCR. A repeated measurement analysis (Proc GLM) was performed using SAS. If there was no treatment and time interaction, main effects of treatment by time were tested by ANOVA. Results: Electrophoresis data showed that by 7 d post-castration RNA isolated from all the testicle samples of the Burd castrated animals, the epididymis and middle scrotum samples from Band castrates were degraded. Transitory effects were observed in the gene expression of IFN-γ, IL-6, IL-8 and TNF-α at 12 h and 24 h post treatment. Burd castrates had greater (P < 0.05) testicular IFN-γ mRNA levels compared with Band and Con animals, but lower (P < 0.05) testicular TNF-α mRNA levels compared with Con animals. Band castrates had greater (P < 0.05) testicular IL-6 mRNA levels than Burd castrates at 12 h post-castration. Burd castrates had greater (P < 0.05) testicular IL-8 mRNA levels than Band and Con animals at 24 h post-castration. In the epididymis, Burd castrates had greater (P < 0.05) IL-6 mRNA (both at 12 h and 24 h post treatment) and IL-8 mRNA (12 h post treatment) levels compared with Band and Con animals; Burd castrates had greater (P = 0.049) IL-10 mRNA levels than Band castrates at 12 h post-castration. Conclusion: Banding castration caused more inflammatory associated gene expression changes to the epididymis and scrotum than burdizzo. Burdizzo caused more severe acute inflammatory responses, in terms of pro-inflammatory cytokine gene expression, in the testis and epididymis than banding
Automatic segmentation of myocardium from black-blood MR images using entropy and local neighborhood information.
By using entropy and local neighborhood information, we present in this study a robust adaptive Gaussian regularizing Chan-Vese (CV) model to segment the myocardium from magnetic resonance images with intensity inhomogeneity. By utilizing the circular Hough transformation (CHT) our model is able to detect epicardial and endocardial contours of the left ventricle (LV) as circles automatically, and the circles are used as the initialization. In the cost functional of our model, the interior and exterior energies are weighted by the entropy to improve the robustness of the evolving curve. Local neighborhood information is used to evolve the level set function to reduce the impact of the heterogeneity inside the regions and to improve the segmentation accuracy. An adaptive window is utilized to reduce the sensitivity to initialization. The Gaussian kernel is used to regularize the level set function, which can not only ensure the smoothness and stability of the level set function, but also eliminate the traditional Euclidean length term and re-initialization. Extensive validation of the proposed method on patient data demonstrates its superior performance over other state-of-the-art methods
- …
