3,648 research outputs found
A computational simulation of children's performance across three nonword repetition tests
The nonword repetition test has been regularly used to examine children’s vocabulary acquisition, and yet there is no clear explanation of all of the effects seen in nonword repetition. This paper presents a study of 5-6 year-old children’s repetition performance on three nonword repetition tests that vary in the degree of their lexicality. EPAM-VOC, a model of children’s vocabulary acquisition, is then presented that captures the children’s performance in all three repetition tests. The model represents a clear explanation of how working memory and long-term lexical and sub-lexical knowledge interact in a way that is able to simulate repetition performance across three nonword tests within the same model and without the need for test specific parameter settings
Divided attention, selective attention and drawing: Processing preferences in Williams syndrome are dependent on the task administered
The visuo-spatial abilities of individuals with Williams syndrome (WS) have consistently been shown to be generally weak. These poor visuo-spatial abilities have been ascribed to a local processing bias by some [30] and conversely, to a global processing bias by others [24]. In this study, two identification versions and one drawing version of the Navon hierarchical processing task, a non-verbal task, were employed to investigate this apparent contradiction. The two identification tasks were administered to 21 individuals with WS, 21 typically developing individuals, matched by non-verbal ability, and 21 adult participants matched to the WS group by mean chronological age. The third, drawing task was administered to the WS group and the TD controls only. It was hypothesised that the WS group would show differential processing biases depending on the type of processing the task was measuring. Results from two identification versions of the Navon task measuring divided and selective attention showed that the WS group experienced equal interference from global to local as from local to global levels, and did not show an advantage of one level over another. This pattern of performance was broadly comparable to that of the control groups. The third task, a drawing version of the Navon task, revealed that individuals with WS were significantly better at drawing the local form in comparison to the global figure, whereas the typically developing control group did not show a bias towards either level. In summary, this study demonstrates that individuals with WS do not have a local or a global processing bias when asked to identify stimuli, but do show a local bias in their drawing abilities. This contrast may explain the apparently contrasting findings from previous studies
Block design performance in the Williams syndrome phenotype: A problem with mental imagery?
Williams syndrome (WS) is a rare genetic disorder which, among other characteristics, has a distinctive cognitive profile. Non-verbal abilities are generally poor in relation to verbal abilities, but also show varying levels of ability in relation to each other. Performance on block construction tasks represents arguably the weakest non-verbal ability in WS. In this study we examined two requirements of block construction tasks in 21 individuals with WS and 21 typically developing (TD) control individuals. The Squares task, a novel two-dimensional block construction task, manipulated patterns by segmentation and perceptual cohesiveness to investigate the first factor, processing preference (local or global), and by obliqueness to examine the second factor, the ability to use mental imagery. These two factors were investigated directly by the Children?s Embedded Figures Test (CEFT; Witkin, Oltman, Raskin & Karp, 1971) and a mental rotation task respectively. Results showed that individuals with WS did not differ from the TD group in their processing style. However, the ability to use mental imagery was significantly poorer in the WS group than the TD group. This suggests that weak performance on the block construction tasks in WS may relate to an inability to use mental imagery
Recommended from our members
The Gospel of Jesus' Wife: Constructing a Context
It has been proposed that references to Jesus' relationship to Mary Magdalene in theGospel of Philiprepresent a possible context for an early gospel fragment in which Jesus refers to her as ‘My wife’. It will be argued here that Mary's relationship to Jesus inPhilipis determined by her role as privileged recipient of revelation, not by her marital status. More significant in accounting for the Jesus' Wife fragment is theGospel of Thomas, which the author appears to have known in precisely the text-form represented by the one surviving Coptic exemplar.This is the author accepted manuscript. The final version is available from Cambridge University Press via http://dx.doi.org/10.1017/S002868851500010
Computer simulations of developmental change: The contributions of working memory capacity and long-term knowledge
Increasing working memory (WM) capacity is often cited as a major influence on children’s development and yet WM capacity is difficult to examine independently of long-term knowledge. A computational model of children’s nonword repetition (NWR) performance is presented that independently manipulates long-term knowledge and WM capacity to determine the relative contributions of each in explaining the developmental data. The simulations show that (1) both mechanisms independently cause the same overall developmental changes in NWR performance; (2) increase in long-term knowledge provides the better fit to the child data; and (3) varying both long-term knowledge and WM capacity adds no significant gains over varying long-term knowledge alone. Given that increases in long-term knowledge must occur during development, the results indicate that increases in WM capacity may not be required to explain developmental differences. An increase in WM capacity should only be cited as a mechanism of developmental change when there are clear empirical reasons for doing so
Linking working memory and long-term memory: A computational model of the learning of new words
The nonword repetition (NWR) test has been shown to be a good predictor of children’s vocabulary size. NWR performance has been explained using phonological working memory, which is seen as a critical component in the learning of new words. However, no detailed specification of the link between phonological working memory and long-term memory (LTM) has been proposed. In this paper, we present a computational model of children’s vocabulary acquisition (EPAM-VOC) that specifies how phonological working memory and LTM interact. The model learns phoneme sequences, which are stored in LTM and mediate how much information can be held in working memory. The model’s behaviour is compared with that of children in a new study of NWR, conducted in order to ensure the same nonword stimuli and methodology across ages. EPAM-VOC shows a pattern of results similar to that of children: performance is better for shorter nonwords and for wordlike nonwords, and performance improves with age. EPAM-VOC also simulates the superior performance for single consonant nonwords over clustered consonant nonwords found in previous NWR studies. EPAM-VOC provides a simple and elegant computational account of some of the key processes involved in the learning of new words: it specifies how phonological working memory and LTM interact; makes testable predictions; and suggests that developmental changes in NWR performance may reflect differences in the amount of information that has been encoded in LTM rather than developmental changes in working memory capacity.
Keywords: EPAM, working memory, long-term memory, nonword repetition, vocabulary acquisition, developmental change
What role did the media play in the EU referendum?
By Nuala Gathercole-Lam, an LSE MSc student in Media, Communication and Development A majority of those who came out to vote on June 23rd chose for Britain to leave the EU and I will not advocate for their vote to be disregarded. However, the situation was not as simple as Theresa May would have us believe. When we exercise our democratic rights, we do not do so in isolation – the news media plays a significant role in shaping public opinion, and so is a major player in our democracy
Why computational models are better than verbal theories: the case of nonword repetition
Tests of nonword repetition (NWR) have often been used to examine children’s phonological knowledge and word learning abilities. However, theories of NWR primarily explain performance either in terms of phonological working memory or long-term knowledge, with little consideration of how these processes interact. One theoretical account that focuses specifically on the interaction between short-term and long-term memory is the chunking hypothesis. Chunking occurs because of repeated exposure to meaningful stimulus items, resulting in the items becoming grouped (or chunked); once chunked, the items can be represented in short-term memory using one chunk rather than one chunk per item. We tested several predictions of the chunking hypothesis by presenting 5-6 year-old children with three tests of NWR that were either high, medium, or low in wordlikeness. The results did not show strong support for the chunking hypothesis, suggesting that chunking fails to fully explain children’s NWR behavior. However, simulations using a computational implementation of chunking (namely CLASSIC, or Chunking Lexical And Sublexical Sequences In Children) show that, when the linguistic input to 5-6 year old children is estimated in a reasonable way, the children’s data is matched across all three NWR tests. These results have three implications for the field: (a) a chunking account can explain key NWR phenomena in 5-6 year old children; (b) tests of chunking accounts require a detailed specification both of the chunking mechanism itself and of the input on which the chunking mechanism operates; and (c) verbal theories emphasizing the role of long-term knowledge (such as chunking) are not precise enough to make detailed predictions about experimental data, but computational implementations of the theories can bridge the gap
The development of memory maintenance strategies:Training cumulative rehearsal and interactive imagery in children aged between 5 and 9
The current study explored the extent to which children above and below the age of 7 years are able to benefit from either training in cumulative rehearsal or in the use of interactive imagery when carrying out working memory tasks. Twenty-four 5- to 6-year-olds and 24 8- to 9-year olds were each assigned to one of three training groups who either received cumulative rehearsal, interactive imagery, or passive labelling training. Participants’ ability to maintain material during a filled delay was then assessed, and the nature of the distraction that was imposed during this delay was varied to shed further light on the mechanisms that individuals used to maintain the memoranda in working memory in the face of this distraction. The results suggest that the rehearsal training employed here did improve recall by virtue of encouraging rehearsal strategies, in a way that was not observed among participants receiving interactive imagery training. The fact that these effects were not mediated by age group counts against the view that younger individuals are either unable to rehearse, or show impoverished verbal serial recall because they do not spontaneously engage in rehearsal
Written language skills in children with specific language impairment
Background. Young children are often required to carry out writing tasks in an educational context. However, little is known about the patterns of writing skills that children with Specific Language Impairment (CwSLI) have relative to their typically developing peers
- …
