1,286 research outputs found

    Future Diffusion of PK1-Technology — A German Delphi Study

    Get PDF

    Neuere Methoden der Haushaltsplanung

    Full text link

    Finanzierungsprobleme der Hochschulausbildung

    Full text link

    Reproductive effort transiently reduces antioxidant capacity in a wild bird

    Get PDF
    Oxidative stress has been suggested as a proximate cost of reproduction and hence as a major constraint in the evolution of life histories, and it is therefore thought that antioxidants alleviate the effects of reproductive effort on oxidative stress. Furthermore, carotenoid-based ornaments have been proposed to mirror male ability to resist oxidative stress. Using a full-factorial experimental design in a natural population of great tits Parus major, we manipulated brood size and supplemented the male parent with either carotenoids or a placebo. We then assessed antioxidant capacity via a measure of whole blood resistance to a free radical attack during the nestling rearing period. Males of enlarged broods showed impaired antioxidant capacity 5 days after the brood size manipulation. However, 13 days after manipulation, they had their antioxidant capacity restored, an effect that may be due to the development of compensatory antioxidant mechanisms or due to reduced investment in the current reproduction in favor of future survival and reproduction. Carotenoid supplementation did not affect male antioxidant capacity nor was the interaction with the brood manipulation significant. Males with stronger carotenoid-based plumage colors did not show higher antioxidant capacity 5 days after the brood size manipulation, but after 13 days, the relationship was highly significant. This study on a natural population shows that larger brood size can induce a transient decrease in antioxidant capacity. It also supports the hypothesis that carotenoid-based plumage may signal male ability to resist oxidative stress, particularly during the energetically demanding nestling rearing perio

    Effect of sibling competition and male carotenoid supply on offspring condition and oxidative stress

    Get PDF
    Early developmental conditions have major implications for an individual's fitness. In species where offspring are born simultaneously, the level of sibling competition for food access is intense. In birds, high sibling competition may subject nestlings to decreased growth rate as a result of limited food and increased levels of oxidative stress through high metabolic activity induced by begging behaviors. We manipulated the level of sibling competition in a natural population of great tits and assessed the consequences for nestling body condition and resistance to oxidative stress. In a full factorial design, we both augmented brood size to increase sibling competition and supplemented the male parents with physiological doses of carotenoids thereby doubling the natural carotenoid intake, aiming at increasing the males' investment in current reproduction and thereby decreasing sibling competition. Nestling body mass was reduced by the brood enlargement and enhanced by the carotenoid supplementation of fathers. Nestling resistance to oxidative stress, measured as total antioxidant defenses in whole blood, was not influenced by the treatments. Because nestlings experience high metabolic activities, an absence of an effect of sibling competition on free radicals production seems unlikely. Nestling body mass decreased and resistance to oxidative stress tended to increase with initial brood size, and hence these correlational effects suggest a trade-off between morphological growth and development of the antioxidant system. However, the result of the experimental treatment did not support this trade-off hypothesis. Alternatively, it suggests that nestling developed compensatory mechanisms that were not detected by our antioxidant capacity measur

    Nitrogen deficiency in Arabidopsis affects galactolipid composition and gene expression and results in accumulation of fatty acid phytyl esters

    Get PDF
    Nitrogen is an essential nutrient for plants because it represents a major constituent of numerous cellular compounds, including proteins, amino acids, nucleic acids and lipids. While N deprivation is known to have severe consequences for primary carbon metabolism, the effect on chloroplast lipid metabolism has not been analysed in higher plants. Nitrogen limitation in Arabidopsis led to a decrease in the chloroplast galactolipid monogalactosyldiacylglycerol (MGDG) and a concomitant increase in digalactosyldiacylglycerol (DGDG), which correlated with an elevated expression of the DGDG synthase genes DGD1 and DGD2. The amounts of triacylglycerol and free fatty acids increased during N deprivation. Furthermore, phytyl esters accumulated containing medium-chain fatty acids (12:0, 14:0) and a large amount of hexadecatrienoic acid (16:3). Fatty acid phytyl esters were localized to chloroplasts, in particular to thylakoids and plastoglobules. Different polyunsaturated acyl groups were found in phytyl esters accumulating in Arabidopsis lipid mutants and in other plants, including 16:3 and 18:3 species. Therefore N deficiency in higher plants results in a co-ordinated breakdown of galactolipids and chlorophyll with deposition of specific fatty acid phytyl esters in thylakoids and plastoglobules of chloroplasts

    Metabolic determinants of the immune modulatory function of neural stem cells.

    Get PDF
    BACKGROUND: Neural stem cells (NSCs) display tissue trophic and immune modulatory therapeutic activities after transplantation in central nervous system disorders. The intercellular interplay between stem cells and target immune cells is increased in NSCs exposed to inflammatory cues. Here, we hypothesize that inflammatory cytokine signalling leads to metabolic reprogramming of NSCs regulating some of their immune modulatory effects. METHODS: NSC lines were prepared from the subventricular zone (SVZ) of 7-12-week-old mice. Whole secretome-based screening and analysis of intracellular small metabolites was performed in NSCs exposed to cocktails of either Th1-like (IFN-γ, 500 U/ml; TNF-α, 200 U/ml; IL-1β, 100 U/ml) or Th2-like (IL-4, IL-5 and IL-13; 10 ng/ml) inflammatory cytokines for 16 h in vitro. Isotopologues distribution of arginine and downstream metabolites was assessed by liquid chromatography/mass spectrometry in NSCs incubated with U-(13)C6 L-arginine in the presence or absence of Th1 or Th2 cocktails (Th1 NSCs or Th2 NSCs). The expression of arginase I and II was investigated in vitro in Th1 NSCs and Th2 NSCs and in vivo in the SVZ of mice with experimental autoimmune encephalomyelitis, as prototypical model of Th1 cell-driven brain inflammatory disease. The effects of the inflammatory cytokine signalling were studied in NSC-lymph node cells (LNC) co-cultures by flow cytometry-based analysis of cell proliferation following pan-arginase inhibition with N(ω)-hydroxy-nor-arginine (nor-NOHA). RESULTS: Cytokine-primed NSCs showed significantly higher anti-proliferative effect in co-cultures vs. control NSCs. Metabolomic analysis of intracellular metabolites revealed alteration of arginine metabolism and increased extracellular arginase I activity in cytokine-primed NSCs. Arginase inhibition by nor-NOHA partly rescued the anti-proliferative effects of cytokine-primed NSCs. CONCLUSIONS: Our work underlines the use of metabolic profiling as hypothesis-generating tools that helps unravelling how stem cell-mediated mechanisms of tissue restoration become affected by local inflammatory responses. Among different therapeutic candidates, we identify arginase signalling as novel metabolic determinant of the NSC-to-immune system communication.This work has received support from the National Multiple Sclerosis Society (NMSS, partial grants RG-4001-A1), the Italian Multiple Sclerosis Association (AISM, grant 2010/R/31 and grant 2014/PMS/4), the Italian Ministry of Health (GR08-7), the European Research Council (ERC) under the ERC-2010-StG Grant agreement n° 260511-SEM_SEM and the UK Regenerative Medicine Platform Acellular hub (Partnership award RG69889) and core support grant from the Wellcome Trust and MRC to the Wellcome Trust–Medical Research Council Cambridge Stem Cell Institute. LPJ was supported by a Wellcome Trust Research Training Fellowship (RG79423).This is the final version of the article. It first appeared from BioMed Central via http://dx.doi.org/10.1186/s12974-016-0667-

    Hypoxia-induced nitric oxide production and tumour perfusion is inhibited by pegylated arginine deiminase (ADI-PEG20).

    Get PDF
    The hypoxic tumour microenvironment represents an aggressive, therapy-resistant compartment. As arginine is required for specific hypoxia-induced processes, we hypothesised that arginine-deprivation therapy may be useful in targeting hypoxic cancer cells. We explored the effects of the arginine-degrading agent ADI-PEG20 on hypoxia-inducible factor (HIF) activation, the hypoxia-induced nitric oxide (NO) pathway and proliferation using HCT116 and UMUC3 cells and xenografts. The latter lack argininosuccinate synthetase (ASS1) making them auxotrophic for arginine. In HCT116 cells, ADI-PEG20 inhibited hypoxic-activation of HIF-1α and HIF-2α, leading to decreased inducible-nitric oxide synthase (iNOS), NO-production, and VEGF. Interestingly, combining hypoxia and ADI-PEG20 synergistically inhibited ASS1. ADI-PEG20 inhibited mTORC1 and activated the unfolded protein response providing a mechanism for inhibition of HIF and ASS1. ADI-PEG20 inhibited tumour growth, impaired hypoxia-associated NO-production, and decreased vascular perfusion. Expression of HIF-1α/HIF-2α/iNOS and VEGF were reduced, despite an increased hypoxic tumour fraction. Similar effects were observed in UMUC3 xenografts. In summary, ADI-PEG20 inhibits HIF-activated processes in two tumour models with widely different arginine biology. Thus, ADI-PEG20 may be useful in the clinic to target therapy-resistant hypoxic cells in ASS1-proficient tumours and ASS1-deficient tumours.Thanks to Dr John Bomalaski, (Polaris Pharmaceuticals, Inc) for supplying the ADI-PEG20, to Dr Simon S Hoer for useful discussions and to members of Histopathology/ISH (CRUK Cambridge Institute, UK) for IHC and imaging assistance. This work was supported by the Wellcome Trust and the NIHR Cambridge Biomedical Research Centre Senior Investigator Awards (to P.H.M., supporting N.B.), EU FP7 Metoxia Grant agreement no. 222741 (to P.H.M., supporting G.C.), UCL Cancer Research UK Centre (to M.R.), King’s College London and UCL Comprehensive Cancer Imaging Centre, Cancer Research UK and EPSRC in association with the Medical Research Council (MRC), the DoH (England: to R.B.P.), MRC Cancer Unit Core Funding (to C.F., supporting E.G.).This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/srep2295

    Inhibition of glucose-6-phosphate dehydrogenase sensitizes cisplatin-resistant cells to death.

    Get PDF
    The mechanisms of cisplatin resistance, one of the major limitations of current chemotherapy, has only partially been described. We previously demonstrated that cisplatin-resistant ovarian cancer cells (C13), are characterized by reduced mitochondrial activity and higher glucose-dependency when compared to the cisplatin-sensitive counterpart (2008). In this work we further characterized the role of metabolic transformation in cisplatin resistance. By using transmitochondrial hybrids we show that metabolic reprogramming of cisplatin-resistant cell is not caused by inherent mtDNA mutations. We also found that C13 cells not only present an increased glucose-uptake and consumption, but also exhibit increased expression and enzymatic activity of the Pentose Phosphate pathway (PPP) enzyme Glucose-6-Phosphate Dehydrogenase (G6PDH). Moreover, we show that cisplatin-resistant cells are more sensitive to G6PDH inhibition. Even if the metabolomic fingerprint of ovarian cancer cells remains to be further elucidated, these findings indicate that PPP offers innovative potential targets to overcome cisplatin resistance.This work was financially supported by PRAT (University of Padova), grant no. CPDA124517/12 and MIUR grant no 60A04–0443. DC fellowship was supported by grant no. CPDR134012. AR was supported by the AIRC grant no. IG 15863 and by the University of Padova grant no. CPDA 123598.This is the final version of the article. It first appeared from Impact Journals via http://dx.doi.org/10.18632/oncotarget.494
    corecore