2,201 research outputs found
Can Neuroscience Help Predict Future Antisocial Behavior?
Part I of this Article reviews the tools currently available to predict antisocial behavior. Part II discusses legal precedent regarding the use of, and challenges to, various prediction methods. Part III introduces recent neuroscience work in this area and reviews two studies that have successfully used neuroimaging techniques to predict recidivism. Part IV discusses some criticisms that are commonly levied against the various prediction methods and highlights the disparity between the attitudes of the scientific and legal communities toward risk assessment generally and neuroscience specifically. Lastly, Part V explains why neuroscience methods will likely continue to help inform and, ideally, improve the tools we use to help assess, understand, and predict human behavior
Interplay of Magnetism and Transport in HoBi
We report the observation of an extreme magnetoresistance (XMR) in HoBi with
a large magnetic moment from Ho f-electrons. Neutron scattering is used to
determine the magnetic wave vectors across several metamagnetic (MM)
transitions on the phase diagram of HoBi. Unlike other magnetic rare-earth
monopnictides, the field dependence of resistivity in HoBi is non-monotonic and
reveals clear signatures of every metamagnetic transition in the
low-temperature and low-field regime, at T < 2 K and H < 2.3 T. The XMR appears
at H > 2.3 T after all the metamagnetic transitions are complete and the system
is spin-polarized by the external magnetic field. The existence of an onset
field for XMR and the intimate connection between magnetism and transport in
HoBi are unprecedented among the magnetic rare-earth monopnictides. Therefore,
HoBi provides a unique opportunity to understand the electrical transport in
magnetic XMR semimetals.Comment: 6 pages, 4 figure
Recommended from our members
Cell-to-cell variability in cell death: can systems biology help us make sense of it all?
One of the most common observations in cell death assays is that not all cells die at the same time, or at the same treatment dose. Here, using the perspective of the systems biology of apoptosis and the context of cancer treatment, we discuss possible sources of this cell-to-cell variability as well as its implications for quantitative measurements and computational models of cell death. Many different factors, both within and outside of the apoptosis signaling networks, have been correlated with the variable responses to various death-inducing treatments. Systems biology models offer us the opportunity to take a more synoptic view of the cell death process to identify multifactorial determinants of the cell death decision. Finally, with an eye toward ‘systems pharmacology', we discuss how leveraging this new understanding should help us develop combination treatment strategies to compel cancer cells toward apoptosis by manipulating either the biochemical state of cancer cells or the dynamics of signal transduction
Gapped and gapless short range ordered magnetic states with wavevectors in the pyrochlore magnet TbTiO
Recent low temperature heat capacity (C) measurements on polycrystalline
samples of the pyrochlore antiferromagnet TbTiO
have shown a strong sensitivity to the precise Tb concentration , with a
large anomaly exhibited for at K and no such
anomaly and corresponding phase transition for . We have grown single
crystal samples of TbTiO, with approximate
composition , and , where the single
crystal exhibits a large C anomaly at =0.45 K, but neither the
nor the single crystals display any such anomaly. We
present new time-of-flight neutron scattering measurements on the
and the samples which show strong
quasi-Bragg peaks at low
temperatures characteristic of short range antiferromagnetic spin ice (AFSI)
order at zero magnetic field but only under field-cooled conditions, as was
previously observed in our single crystal. These results show that
the strong quasi-Bragg peaks
and gapped AFSI state at low temperatures under field cooled conditions are
robust features of TbTiO, and are not correlated with the presence
or absence of the C anomaly and phase transition at low temperatures.
Further, these results show that the ordered state giving rise to the C
anomaly is confined to for
TbTiO, and is not obviously connected with
conventional order of magnetic dipole degrees of freedom.Comment: 7 pages, 3 figure
International Governance of Autonomous Military Robots
New technologies have always been a critical component of military strategy and preparedness. One new technology on the not-too-distant technological horizon is lethal autonomous robotics, which would consist of robotic weapons capable of exerting lethal force without human control or intervention. There are a number of operational and tactical factors that create incentives for the development of such lethal systems as the next step in the current development, deployment and use of autonomous systems in military forces. Yet, such robotic systems would raise a number of potential operational, policy, ethical and legal issues. This article summarizes the current status and incentives for the development of lethal autonomous robots, discusses some of the issues that would be raised by such systems, and calls for a national and international dialogue on appropriate governance of such systems before they are deployed. The article reviews potential modes of governance, ranging from ethical principles implemented through modifications or refinements of national policies, to changes in the law of war and rules of engagement, to international treaties or agreements, or to a variety of other "soft law" governance mechanisms
- …
